← 返回
储能系统技术 储能系统 调峰调频 强化学习 ★ 5.0

受章鱼启发的互联电网协同负荷频率控制:一种多智能体深度元强化学习方法

Bionic cooperative load frequency control in interconnected grids: A multi-agent deep Meta reinforcement learning approach

作者 Jiawen Li · Jichao Dai · Haoyang Cui
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 379 卷
技术分类 储能系统技术
技术标签 储能系统 调峰调频 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A SC-LFC method is proposed to balance the interests of operators.
语言:

中文摘要

摘要 在基于性能的调频市场环境下运行的互联电网中,缺乏协调的频率控制策略以及联络线中的功率波动可能加剧电网运营商之间的利益冲突,导致频率波动更加频繁且严重。为应对这些挑战并提升电网稳定性,本文提出了受章鱼启发的协同负荷频率控制(Squid-Inspired Cooperative Load Frequency Control, SC-LFC)方法。该方法模仿章鱼中观察到的分布式神经决策机制,将每个区域内的各个机组视为独立的智能体。在实时应用中,各机组独立采集本地频率与状态信息,从而避免因区域间通信延迟或错误导致的协调失效问题。为了在复杂、随机的互联电网环境中实现多目标、多区域间的高效协同控制,本文引入了自动课程多智能体深度元演员-评论家(Automatic Curriculum Multi-Agent Deep Meta Actor-Critic, ACMA-DMAC)算法。该算法采用混合式课程学习策略,实现逐步学习与自适应调整,从而增强SC-LFC策略的鲁棒性与控制效率。基于中国南方电网(CSG)四区域负荷频率控制模型的仿真结果验证了所提出方法的有效性及其优越性能。

English Abstract

Abstract In the interconnected power grid operating within a performance-based frequency regulation market, uncoordinated frequency control strategies and power fluctuations in interconnection lines can intensify conflicts of interest among grid operators, leading to frequent and severe frequency fluctuations. To address these challenges and enhance grid stability, the Squid-Inspired Cooperative Load Frequency Control (SC-LFC) method is proposed. This method mimics the distributed neural decision-making observed in squids, treating each unit within an area as an independent agent. In real-time applications, each unit independently collects local frequency and status information, thereby avoiding coordination failures due to inter-area communication delays or errors. To achieve efficient coordinated control across multiple objectives and regions in complex, random interconnected power grids, the Automatic Curriculum Multi-Agent Deep Meta Actor-Critic (ACMA-DMAC) algorithm is introduced. This approach employs a hybrid curriculum learning strategy, enabling gradual learning and adaptation, which enhances the robustness and efficiency of the SC-LFC strategy. Simulations based on a four-area load frequency control model of the China Southern Grid (CSG) validate the effectiveness and superior performance of the proposed method.
S

SunView 深度解读

该仿生协同负荷频率控制技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。多智能体深度元强化学习算法可集成至储能系统的调频控制策略,使每个储能单元作为独立智能体实时响应电网频率波动,避免通信延迟导致的协调失效。结合阳光电源GFM/VSG控制技术,可显著提升多区域互联电网中储能系统的调频响应速度和鲁棒性,优化调频辅助服务市场收益,为iSolarCloud平台的智能调度算法提供创新思路,增强大规模储能电站的协同控制能力。