← 返回
结合MPC与深度强化学习的燃料电池/电池混合能源系统新型能量管理策略
Novel energy management strategy for fuel cell/battery hybrid energy systems combining MPC and deep reinforcement learning
语言:
中文摘要
摘要 本文提出了一种新型的能量管理策略(EMS),用于燃料电池/电池混合能源系统,该策略通过将模型预测控制(MPC)与深度强化学习(DRL)相结合实现。所提出的EMS充分利用了MPC与DRL各自的优势,有效缓解了由于模型不确定性导致的MPC性能下降问题,同时加速了DRL的收敛过程,并增强了其对未预见工况的适应能力。具体而言,本研究首先建立了包含各部件退化特性的燃料电池/电池混合能源系统的动态模型,在此基础上构建相应的MPC模型。MPC作为基础控制器,利用线性化模型确保系统的稳定性及约束条件的满足;而DRL则提供一种补偿性策略,以提升系统在长期运行中的决策能力。该联合控制策略被应用于优化混合能源系统,其优化目标经过精心设计,旨在平衡电池荷电状态(SOC)维持、氢气消耗以及各能源部件的退化成本。仿真结果表明,所提出的控制策略在多个性能指标上均优于单独使用的基于MPC的EMS和基于DRL的EMS。与纯MPC相比,该策略导致电池退化增加了4.41%,但显著降低了51.43%的燃料电池退化。此外,在维持电池SOC的同时,实现了最低的系统运行成本,相较于MPC和DRL分别降低了4.45%和2.13%。进一步地,与经典EMS方法的对比分析以及在未知场景下的验证结果进一步凸显了所提策略的鲁棒性及其整体性能优势。
English Abstract
Abstract This paper proposes a novel energy management strategy (EMS) for fuel cell/battery hybrid energy systems by integrating model predictive control (MPC) with deep reinforcement learning (DRL).The proposed EMS leverages the advantages of both MPC and DRL, effectively addressing MPC’s performance degradation due to model uncertainties, while simultaneously accelerating DRL convergence and enhancing its adaptability to unforeseen conditions. Specifically, the study first formulates a dynamic model of the fuel cell/battery hybrid energy system , incorporating component degradation characteristics. Based on this, the corresponding MPC model is then developed. MPC serves as the baseline controller, ensuring system stability and constraint adherence through a linearized model, while DRL provides a compensatory policy to enhance the system’s long-term decision-making capability. The combined control strategy is applied to optimize the hybrid energy system, with objectives carefully designed to balance state of charge (SOC) maintenance, hydrogen consumption, and degradation costs of each energy source. Simulation results demonstrate that the proposed control strategy outperforms both the standalone MPC-based EMS and the DRL-based EMS across multiple performance indicators. Compared to MPC, the proposed strategy results in a 4.41 % increase in battery degradation but achieves a significant 51.43 % reduction in fuel cell degradation. Moreover, while maintaining battery SOC, it achieves the lowest system operating cost, reducing it by 4.45 % and 2.13 % compared to MPC and DRL, respectively. Furthermore, comparative analyses with classical EMSs and validations under unknown scenarios further highlight the robustness and overall performance advantages of the proposed strategy.
S
SunView 深度解读
该MPC与深度强化学习融合的能源管理策略对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。通过MPC保障系统稳定性与约束遵循,DRL优化长期决策,可显著降低燃料电池衰减51.43%并减少系统运行成本4.45%。该混合控制架构可应用于阳光电源多能互补储能系统,特别是氢储能与电池储能协同场景,提升iSolarCloud平台的智能调度能力,增强预测性维护策略,为构网型储能系统提供更鲁棒的能量管理方案,助力新型电力系统灵活调控。