← 返回
储能系统技术 储能系统 模型预测控制MPC 强化学习 ★ 5.0

基于稳定性的强化学习控制在电力电子变换器中的应用:一种李雅普诺夫方法

Stability-Guided Reinforcement Learning Control for Power Converters: A Lyapunov Approach

作者 Yihao Wan · Qianwen Xu
期刊 IEEE Transactions on Industrial Electronics
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 模型预测控制MPC 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 强化学习 功率变换器 系统稳定性 李雅普诺夫函数 控制策略
语言:

中文摘要

强化学习(RL)因其处理非线性和自学习能力而在电力电子领域受到关注。合理配置下,RL智能体可通过与变换器系统交互自主学习最优控制策略。类似于传统的有限控制集模型预测控制(FCS-MPC),RL可学习最优开关策略并实现良好控制性能。然而,RL控制器改变闭环动态特性,给系统稳定性保障与评估带来挑战。为此,本文提出构造李雅普诺夫函数以引导智能体在提升控制性能的同时确保闭环稳定性,并通过推导电压控制误差收敛的紧致集量化系统的实用稳定域。最后,在实验平台上验证了所提方法的有效性,仿真与实验结果均表明该方法具有优越性能。

English Abstract

Reinforcement learning (RL) has gained popularity in power electronics due to its ability to handle nonlinearities and self-learning characteristics. When properly configured, an RL agent can autonomously learn the optimal control policy by interacting with the converter system. In particular, similar to conventional finite-control-set model predictive control (FCS-MPC), the RL agent can learn the optimal switching strategy for the power converter and achieve desirable control performance. However, the alteration of closed-loop dynamics by the RL controller poses challenges in ensuring and assessing system stability. To address this, the article proposes formulating a Lyapunov function to guide the agent in learning an optimal control policy that enhances desirable control performance while ensuring closed-loop stability. Additionally, the practical stability region of the system is quantified by deriving a compact set regarding the convergence of voltage control error. Finally, the proposed Lyapunov-guided RL controller is validated through a demonstration framework with a practical experimental setup. Both simulation and experimental results confirm the effectiveness of the proposed method.
S

SunView 深度解读

该李雅普诺夫引导的强化学习控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。相比传统FCS-MPC,该方法通过李雅普诺夫函数保障闭环稳定性,同时利用RL自学习能力优化开关策略,可显著提升储能变流器在复杂工况下的动态响应和鲁棒性。技术可直接应用于构网型GFM控制器设计,解决弱电网并网时的稳定性难题。对SG系列光伏逆变器的MPPT算法优化、SiC/GaN器件的开关损耗优化也有借鉴意义。建议在实用稳定域量化方法基础上,结合阳光电源现有MPC平台进行算法融合验证,推动智能控制技术在储能和新能源领域的产业化应用。