← 返回
深度强化学习作为多能系统中能量流分析与优化的工具
Deep reinforcement learning as a tool for the analysis and optimization of energy flows in multi-energy systems
| 作者 | Andrea Franzos · Gabriele Fambr · Marco Badam |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 341 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Deep Reinforcement Learning is used to optimize the control of Multi-Energy System. |
语言:
中文摘要
摘要 深度强化学习算法不仅有助于开发优化的控制策略,而且可作为探索复杂问题并揭示非显而易见控制方案的有力工具。本文研究了深度强化学习在高比例可再生能源渗透条件下对多能系统进行优化的应用。关键的能量转换技术,如热电联产、电池储能系统、热泵和电转气技术,实现了不同能源网络之间的双向能量交换,从而促进了运行协同效应。由于这些互联关系导致各能源部门之间的相互依赖性,某一领域内的能量流动会显著影响其他领域的流动,因而增加了优化的复杂性。本研究旨在展示一种方法的优势,该方法可用于解读深度强化学习算法所实施的策略,从而最终提高做出最优决策的可能性。该方法促成了一种优化的基于规则机制的建立,该机制被用于分析多能系统,识别最具优势的技术(分别为热泵、电化学电池和电转气技术),并强调实施优化策略以实现有效能源管理的重要性。这种优化策略使得天然气消耗量减少了约15%,二氧化碳排放量降低了18%,燃料和电力成本下降了17%。
English Abstract
Abstract Deep Reinforcement Learning algorithms not only facilitate the development of optimized control strategies but also serve as powerful tools to explore complex problems and uncover non-obvious control solutions. This paper investigates the application of Deep Reinforcement Learning to optimize a Multi-Energy System in the presence of high Renewable Energy Source penetration. Key energy conversion technologies, such as Combined Heat and Power, Battery Energy Storage Systems, Heat Pumps, and Power-to-Gas, enable bidirectional energy exchanges across different networks, thereby fostering operational synergies. Since these interconnections create interdependencies in which energy flows within one sector significantly affect those in another, the complexity of optimization increases. The aim of this study has been to demonstrate the benefits of a method that can be used to interpret strategies implemented by a Deep Reinforcement Learning algorithm, thereby ultimately increasing the possibility of making optimal decisions. This approach has led to the creation of an optimized rule-based mechanism which has been used to analyze the Multi-Energy System, identify the most advantageous technologies (heat pumps, electric batteries and power-togas, respectively), and highlight the importance of implementing an optimized strategy to achieve effective energy management. Such an optimized strategy led to a reduction in natural gas consumption of about 15%, a decrease in CO 2 emissions of 18%, and a reduction in fuel and electricity costs of 17%.
S
SunView 深度解读
该深度强化学习优化方法对阳光电源多能源系统集成具有重要价值。研究验证了储能系统(ST系列PCS、PowerTitan)与热泵、电转气等多能转换技术的协同优化潜力,可降低15%天然气消耗和18%碳排放。建议将此算法框架应用于iSolarCloud平台,实现储能PCS与光伏逆变器(SG系列)的智能协调控制,通过解析DRL策略生成优化规则库,提升综合能源场景下的经济性与低碳性,为工商业储能和虚拟电厂应用提供AI决策支持。