← 返回
面向区域建筑能源系统的智能化管理:一种结合深度强化学习的混合储能框架
Towards intelligent management of regional building energy systems: A framework combined with deep reinforcement learning for hybrid energy storage
| 作者 | Rendong Shena1 · Ruifan Zhengb1 · Dongfang Yangc · Jun Zhaob |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 329 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An energy supply system with [hybrid energy](https://www.sciencedirect.com/topics/engineering/hybrid-energy "Learn more about hybrid energy from ScienceDirect's AI-generated Topic Pages") storage and heat pump is constructed. |
语言:
中文摘要
摘要 可再生能源的应用 increasingly被视为应对建筑能耗快速增长的有效解决方案。将储能装置集成到建筑能源系统中,能够有效缓解可再生能源带来的不确定性,并增强能源供需之间的平衡能力。与单一储能系统相比,混合储能具有更高的调节潜力和灵活性。然而,由于增加了调节变量,控制策略的复杂性显著上升,带来了巨大挑战。此外,现有研究往往忽视了热泵与储热装置之间的相互作用效应。针对上述问题,本研究以天津某区域能源系统为研究对象,该系统集成了可再生能源发电、地源热泵以及混合储能装置。研究中充分考虑地源热泵的运行特性,以优化混合储能系统的充放电过程。采用多智能体深度强化学习算法,自适应地优化混合储能的协调控制,旨在提升系统运行效益并提高可再生能源利用率。与基准模型相比,所提出的方法使系统净收益提高了23.64%,未充分利用的可再生能源量减少了27.96%。
English Abstract
Abstract The adoption of renewable energy has been increasingly recognized as a viable solution to the rapid growth in building energy consumption. Integrating energy storage units into building energy systems can effectively mitigate uncertainties associated with renewable energy and enhance the balance between energy supply and demand. Compared to single energy storage systems, hybrid energy storage offers greater regulation potential and flexibility. However, the increased complexity of control strategies due to additional regulation variables presents a significant challenge. Furthermore, existing research often neglects the interactive effects between heat pumps and heat storage units. Addressing these issues, this study examines a regional energy system in Tianjin that integrates renewable energy generation, ground source heat pumps, and hybrid energy storage. The operational characteristics of ground source heat pumps are incorporated to optimize the charging and discharging processes of hybrid energy storage systems. Using a multi-agent deep reinforcement learning algorithm, the study adaptively optimizes the coordinated control of hybrid energy storage with the objectives of enhancing system operational benefits and increasing renewable energy utilization. Compared to a benchmark model, the proposed approach improves net system income by 23.64% and reduces underutilized renewable energy by 27.96%.
S
SunView 深度解读
该混合储能智能管理技术对阳光电源ST系列PCS及PowerTitan储能系统具有重要应用价值。研究中的多智能体深度强化学习算法可应用于优化我司储能系统与地源热泵的协调控制,提升23.64%系统收益和27.96%新能源利用率的成果,为iSolarCloud平台集成AI优化算法提供创新方向。特别是混合储能充放电策略优化,可增强ST系列PCS在区域建筑能源系统中的调节灵活性,推动储能+热泵一体化解决方案开发,拓展智慧能源管理市场应用场景。