← 返回
储能系统技术 储能系统 户用光伏 强化学习 ★ 5.0

基于贝叶斯鲁棒强化学习的高性能住宅建筑中空调与储能系统协同控制方法研究

Bayesian robust reinforcement learning for coordinated air conditioning and energy storage system control in high-performance residential buildings under forecast uncertainty

作者 Luning Suna · Zehuan Hua · Mitsufusa Nitt · Shimpei Ohsugi · Yuki Sas · Masayuki Maea · Taiji Imaizumi
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 400 卷
技术分类 储能系统技术
技术标签 储能系统 户用光伏 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Defrost time is reduced by user-side HEMS control without hardware changes.
语言:

中文摘要

摘要 在高性能住宅建筑中,通常采用单台设备集中供冷供热的方式以在低负荷条件下提高能源效率。然而,该策略在冬季常导致频繁化霜,降低热舒适性并增加用电量。尽管强化学习在建筑能源控制方面展现出良好前景,尤其是在将天气和电价预测纳入状态变量时,但其性能在预测存在误差的情况下往往显著下降。为解决这一问题,本研究提出一种贝叶斯鲁棒强化学习方法,用于空调与电池系统的联合控制。该方法集成了一种基于物理机制的化霜评估模块,用于动态估算结霜条件下的供暖性能。在训练过程中,引入基于先验知识构建的结构化扰动以模拟真实的预测误差,并在策略目标函数中加入基于Kullback–Leibler(KL)散度的正则化项,以降低对输入扰动的敏感性。这些机制使控制策略能够主动识别结霜风险,并提前调低空调设定温度,利用建筑本体的热储能特性在用户侧抑制化霜事件的发生——无需任何硬件改造。在三种不同预测精度场景(从完全准确到高度不确定)下的仿真结果表明,所提出的方法能有效维持热舒适性,同时显著减少化霜持续时间与用电成本。值得注意的是,在预测误差严重的情况下,该方法相比基准方案最多可实现8.2%的用电成本降幅,验证了其在真实建筑能源管理系统中的鲁棒性与实际应用价值。

English Abstract

Abstract In high-performance residential buildings, centralized air conditioning using a single unit is commonly adopted to improve energy efficiency under low load conditions. However, this strategy often results in frequent defrosting during winter, reducing thermal comfort and increasing electricity consumption. Although reinforcement learning shows promise for building energy control, especially when incorporating weather and electricity price forecasts into the state, its performance tends to deteriorate significantly under prediction errors. To address this issue, this study develops a Bayesian robust RL method for the joint control of air conditioning and battery systems. A physics-driven defrost evaluation module is integrated to dynamically estimate heating performance under frosting conditions. During training, structured perturbations constructed from prior knowledge are introduced to emulate realistic forecast errors, and a Kullback–Leibler (KL) divergence-based regularization term is added to the policy objective to reduce sensitivity to input disturbances. These mechanisms enable the control strategy to proactively identify frosting risks and preemptively lower the air conditioner setpoint, leveraging the building’s thermal storage to suppress defrosting events on the user side—without requiring hardware modifications. Simulation results under three forecast scenarios, ranging from perfect accuracy to high uncertainty, demonstrate that the proposed method effectively maintains thermal comfort while significantly reducing defrost duration and electricity costs. Notably, under severe forecast errors, the method achieves up to an 8.2 % reduction in electricity costs compared to the baseline, confirming its robustness and practical applicability in real-world building energy management systems.
S

SunView 深度解读

该贝叶斯鲁棒强化学习技术对阳光电源户用储能系统(如ST系列PCS)与空调协同控制具有重要应用价值。研究通过物理驱动的除霜评估模块和KL散度正则化,在预测误差下仍可降低8.2%电费,验证了算法鲁棒性。可启发iSolarCloud平台集成该算法,实现储能系统与家用空调的智能联动:利用建筑热惯性预判除霜风险并提前调节,减少频繁除霜导致的能耗激增。该技术可与阳光户用光储系统深度融合,通过电价预测优化充放电策略,提升冬季供暖场景下的用户舒适度与经济性,增强户用储能产品市场竞争力。