← 返回
储能系统技术 储能系统 户用光伏 ★ 5.0

基于固态氢储能的新型电-电三联产系统的动态模型

Dynamic model of a novel power-to-power trigenerative system based on solid-state hydrogen storage

语言:

中文摘要

摘要 未来由不可预测的可再生能源驱动的能源网络面临的最具挑战性的问题之一,是电力生产与需求之间的不匹配。为解决这一问题,目前正对多种能源存储技术进行研究。在此背景下,本文重点探讨氢能在能源存储系统中的应用。具体而言,本研究建立了一个包含100千瓦光伏阵列、50千瓦阴离子交换膜电解槽、12千克金属氢化物氢气储存罐以及30千瓦高温质子交换膜燃料电池的混合可再生能源系统的详细动态模型。所有这些组件集成于一个TRNSYS/MatLab联合仿真平台中,并用于模拟该技术在意大利南部某一地点的应用,模拟所用气象和负荷数据以小时为单位变化。该集成系统实现了59%的一次能源节约,每年减少54吨二氧化碳排放,太阳能发电的自耗率达到63%,通过氢气供给的燃料电池运行满足了全年16%的电力供应,在预期技术成本基础上,其简单投资回收期超过7年。研究结果表明,在离网场景下,若电解槽、储氢材料及燃料电池的成本能够持续降低,并辅以支持性政策措施,则基于氢气的储能系统可显著降低能源消耗和碳排放水平。

English Abstract

Abstract One of the most challenging issue of the future energy networks, powered by unpredictable renewable energy sources, is the mismatch between electricity production and demand. To address this issue, several energy storage technologies are under investigation. In this framework, the present paper focuses on the use of hydrogen as an energy storage system. In particular, a detailed dynamic model for a hybrid renewable energy system including a 100 kW photovoltaic array, a 50 kW anion exchange membrane electrolyzer, a 12 kg metal hydride hydrogen storage tank, and a 30 kW high–temperature proton exchange membrane fuel cell, is developed in this study. All these components are linked within a TRNSYS/MatLab co–simulation platform which is used to simulate the use of the proposed technology for a site located in Southern Italy under hourly varying weather and load data. The integrated system delivers 59 % primary energy savings, avoids 54 tons of carbon dioxide annually, self–consumes 63 % of solar output, supplies 16 % of yearly electricity via hydrogen–fed fuel cell operation, and achieves a simple payback period higher than 7 years based on projected technology costs. These findings demonstrate that hydrogen–based storage systems can dramatically cut energy consumption and emissions in off–grid settings, provided that continued cost reductions in electrolyzers, storage materials, and fuel cells are realized alongside supportive policy measures.
S

SunView 深度解读

该光伏-氢储能三联供系统对阳光电源ST系列储能变流器与SG光伏逆变器协同应用具有重要参考价值。研究验证了100kW光伏配合固态储氢系统实现63%自发自用率和16%氢能供电占比,为我司PowerTitan储能系统拓展长时储能场景提供技术路径。建议将iSolarCloud平台集成氢储能监控模块,结合GFM控制技术优化电解槽-燃料电池功率调度策略,并探索三电平拓扑在电解槽DC/DC变换器中的应用,提升系统综合效率,抢占工商业用户氢储能市场先机。