← 返回

基于混合惩罚函数增强型D3QN算法的微网低碳经济能量管理方法

Low Carbon Economic Energy Management Method in a Microgrid Based on Enhanced D3QN Algorithm With Mixed Penalty Function

作者 Chanjuan Zhao · Yunlong Li · Qian Zhang · Lina Ren
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 充电桩 户用光伏 微电网 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 微电网 能量管理控制 EN - D3QN - MPF算法 低碳经济 充电满意度
语言:

中文摘要

本文提出一种融合混合惩罚函数的增强型 Dueling Double Deep Q Network 算法(EN-D3QN-MPF),用于微网能量管理。构建包含光伏、风力发电、储能系统、电动汽车充电站、温控负荷及价格响应负荷的新型微网模型。通过结合混合惩罚函数与D3QN强化学习,动态平衡奖励权重,实现微网低碳经济运行与用户充电满意度的协同优化。基于中国东部2019年实测数据的仿真结果表明,所提方法在能量管理性能上优于遗传算法、粒子群算法、Dueling DQN、DDQN及D3QN。

English Abstract

In this paper, an enhanced dueling double deep Q network algorithm with mixed penalty function (EN-D3QN-MPF) for microgrid energy management control is developed. First, a novel microgrid model including PV, wind turbine generator, electric storage system, electric vehicle charging station, thermostatically controlled loads, and residential price-responsive loads are proposed. Then, by combining the mixed penalty function method with D3QN reinforcement learning together, a mixed penalty function method is implemented to balance the reward weightings. Accordingly, an EN-D3QN-MPF algorithm is presented to achieve low-carbon economic and EV users' charging satisfaction operation of the microgrid. The effectiveness of the proposed method is verified by the dataset collected from eastern China in 2019. Simulation results validate that our proposed method has superior energy management performance over the genetic algorithm (GA), Particle Swarm Optimization (PSO), dueling deep Q network (dueling DQN), double DQN (DDQN), and D3QN algorithms.
S

SunView 深度解读

该EN-D3QN-MPF算法对阳光电源微网能量管理系统具有重要应用价值。可直接应用于PowerTitan储能系统的智能调度模块,结合ST系列储能变流器实现多时间尺度的功率优化。算法融合的混合惩罚函数机制可嵌入iSolarCloud平台,协同优化SG系列光伏逆变器出力、储能充放电策略与充电桩负荷管理,实现源-储-荷动态平衡。强化学习的自适应特性可提升微网在新能源波动场景下的鲁棒性,为阳光电源开发下一代智能EMS控制器提供算法支撑,特别适用于工商业微网与充储一体化项目的低碳经济运行优化。