← 返回
基于元强化学习的自适应可解释储能控制应对动态场景
Meta Reinforcement Learning Based Adaptive and Interpretable Energy Storage Control Meets Dynamic Scenarios
| 作者 | Yibing Dang · Jiangjiao Xu · Fan Yang · Changjun Jiang · Dongdong Li |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年4月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 微电网 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 储能系统 元强化学习 控制框架 动态微电网 性能提升 |
语言:
中文摘要
随着可再生能源的广泛应用,储能系统在能量调度与经济套利中发挥关键作用。传统强化学习方法因泛化能力有限,在高动态环境下易出现性能下降。本文提出一种基于元强化学习的储能控制框架,包含离线训练与在线适应阶段,通过双循环更新机制和多任务学习获得高泛化性的初始参数,并结合Shapley值方法增强决策可解释性。实验表明,该模型在多种动态微网场景下适应性强,性能较传统方法提升20%至50%,且调度决策特征贡献分析符合人类直觉。
English Abstract
As renewable energy becomes more widespread, energy storage systems (ESSs) play an important role in managing energy distribution and economic arbitrage. Traditional reinforcement learning (RL)-based scheduling methods face performance degradation or failure in highly dynamic environments due to their limited generalization capability, especially amid increasing fluctuations in renewable energy output, electricity prices, and load demands. This paper proposes a novel ESSs control framework based on Meta-Reinforcement Learning (Meta-RL), comprising offline training and online adaptation phases. The offline training phase features a dual-loop update framework, acquiring a model with highly generalizable initial parameters through a multi-task learning approach. In the online adaptation phase, the model can make adaptive adjustments rapidly in response to environmental changes. Lastly, a Shapley Value-based Meta-RL (SMRL) method is proposed to perform an in-depth analysis of decision-making outcomes. Multiple dynamic microgrid (MG) scenarios were simulated using real data with added fluctuation factors for model training and testing. The proposed Meta-RL based model exhibits significantly better adaptability in various scenarios, achieving approximately 20% to 50% performance improvement compared to the traditional RL model. A detailed analysis of the contribution of features behind scheduling decisions shows alignment with human intuition.
S
SunView 深度解读
该元强化学习储能控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。其自适应双循环更新机制可显著提升储能系统在光伏出力波动、负荷变化等动态场景下的调度性能,相比传统方法提升20%-50%的经济效益直接增强产品市场竞争力。Shapley值可解释性分析可集成至iSolarCloud云平台,为用户提供直观的调度策略解释,增强系统透明度。该技术的快速在线适应能力特别适用于微电网ESS集成方案,可实现多场景自动切换优化,减少人工调参成本。建议将元学习框架嵌入储能EMS能量管理系统,结合阳光电源现有MPPT算法和构网型GFM控制技术,形成光储协同智能调度解决方案。