← 返回
储能系统技术 储能系统 微电网 强化学习 ★ 5.0

微电网控制与管理的强化学习解决方案综述

Reinforcement Learning Solutions for Microgrid Control and Management: A Survey

作者 Pedro I. N. Barbalho · Anderson L. Moraes · Vinicius A. Lacerda · Pedro H. A. Barra · Ricardo A. S. Fernandes · Denis V. Coury
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 微电网 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 微电网 强化学习 控制与管理 能源效率 研究趋势与差距
语言:

中文摘要

微电网MG是包含负荷和分布式能源资源的配电系统部分,能够并网或离网运行。具有适当设计的MG控制器提升能源效率,在现代配电系统中发挥重要作用。因此,MG管理和控制因其复杂运行成为广泛研究领域。强化学习RL为处理MG复杂动态和非线性提供自适应解决方案,是传统算法和控制方法在负荷频率控制、资源分配和能源管理等任务中的替代方案。鉴于该主题相关性,本综述检验RL在MG控制和管理中的作用,在先前综述基础上提供全面更新,按RL类型、控制目标和MG运行模式对文章分类。此外,评估基于RL解决方案的硬件实施和性能评估。本综述识别关键研究趋势和空白,有助于理解RL在MG管理和控制中的作用并指导该领域未来解决方案。

English Abstract

A microgrid (MG) is part of a distribution system that comprises loads and distributed energy resources, capable of operating either connected to or islanded from the primary grid. Having an appropriate design, MG controllers improve energy efficiency, playing a vital role in the modern distribution system. Thus, MG management and control has become a broad area of research due to its complex operation. Reinforcement learning (RL) offers adaptive solutions for handling MG complex dynamics and nonlinearity. It is an alternative to traditional algorithms and control methods in tasks, such as load frequency control, resource allocation, and energy management. Due to the relevance of the topic, this survey examined the role of RL in MG control and management, offering a comprehensive update on previous reviews, categorising articles by RL type, control objectives, and MG operational modes. Additionally, hardware implementations and performance assessments across RL-based solutions were evaluated. The present survey identified key research trends and gaps, contributing to understanding the role of RL in MG management and control and guiding future solutions in the field.
S

SunView 深度解读

该强化学习综述对阳光电源微电网智能控制具有重要指导价值。阳光PowerStack微电网系统需要自适应控制算法应对负荷波动和能源不确定性。该研究系统梳理的RL方法可应用于阳光微电网EMS系统,优化负荷频率控制和能源调度。在工商业微电网场景下,RL可实现储能系统的智能充放电决策,提升经济效益。该综述识别的研究趋势和硬件实施经验可指导阳光开发下一代微电网控制器。结合阳光ST储能变流器的边缘计算能力,RL算法可在设备侧实时优化控制策略,提升微电网运行效率和韧性,支持高比例可再生能源接入和自治运行。