← 返回
储能系统技术 储能系统 强化学习 ★ 5.0

基于深度强化学习的考虑动态风的风电场流动控制

Deep reinforcement learning-driven wind farm flow control considering dynamic wind

作者 Hangyu Wang · Shukai He · Jie Yan · Shuang Han · Yongqian Liu
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 337 卷
技术分类 储能系统技术
技术标签 储能系统 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Dynamic wind is considered in flow control to mitigate sensitivity to wind fluctuations.
语言:

中文摘要

摘要 克服由尾流效应引起的功率损失对于提高运行中风电场的效率至关重要。风电场流动控制是实现这一目标的关键方法。然而,包括风速和风向变化在内的动态风况以及环境不确定性,给有效的流动控制带来了重大挑战。为应对这些挑战,本文提出了一种基于深度强化学习并考虑动态风的风电场流动控制方法。首先,从LiDAR测量数据中提取动态风波动特征,构建了全面的数据集。随后,开发了一种以动态风作为输入、通过偏航角调整最大化风电场输出功率的流动控制方法。最后,引入双延迟深度确定性策略梯度(Twin Delayed Deep Deterministic Policy Gradient, TD3)算法,驱动控制模型实现实时优化与在线学习。该模型能够通过经验回放和探索机制应对各种不确定性。仿真结果表明,在风向标准差低于4时,仅考虑平均风的优化方法有效;而考虑动态风的优化方法在所有风况下均有效。与仅考虑平均风的优化相比,考虑动态风可使发电量提升3.3%。

English Abstract

Abstract Mitigating power losses caused by the wake effect is crucial for improving the efficiency of operational wind farms. Wind farm flow control represents a key approach to achieving this objective. However, dynamic wind conditions, including variations in wind speed and direction, along with environmental uncertainties, present significant challenges to effective flow control. To address these challenges, this paper proposes a wind farm flow control method via deep reinforcement learning that considers dynamic wind. Initially, dynamic wind fluctuation characteristics are extracted from LiDAR-measured data, which provides a comprehensive dataset. Subsequently, a flow control method is developed, using dynamic wind as input to maximize wind farm power output through yaw angle adjustments. Finally, the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm is introduced to drive a control model for real-time optimization and online learning. The model is capable of addressing uncertainties through experience replay and exploration mechanisms. Simulation results demonstrate that optimization considering mean wind is effective only when the wind direction standard deviation is below 4, whereas optimization considering dynamic wind is effective across all wind conditions. Considering dynamic wind results in a 3.3% improvement in power generation compared to optimization considering mean wind.
S

SunView 深度解读

该深度强化学习风电场流控技术对阳光电源储能系统具有重要借鉴价值。TD3算法的实时优化与在线学习机制可应用于ST系列PCS的动态功率调度,通过经验回放处理新能源波动不确定性。动态风况建模思路可迁移至PowerTitan储能系统,结合iSolarCloud平台实现风光储协同控制,优化多能互补场景下的功率分配策略。该方法提升3.3%发电量的效果验证了考虑动态特性的必要性,为阳光电源GFM控制算法在复杂工况下的自适应优化提供新思路,可增强储能系统应对电网扰动的鲁棒性。