← 返回
储能系统技术 储能系统 构网型GFM 调峰调频 强化学习 ★ 5.0

基于稳定性保证的构网型逆变器频率调节安全强化学习

Safe Reinforcement Learning for Grid-forming Inverter Based Frequency Regulation with Stability Guarantee

语言:

中文摘要

本研究提出一种面向构网型(GFM)逆变器频率调节的安全强化学习算法。为确保在学习控制策略下基于逆变器的资源(IBR)系统稳定性,将基于模型的强化学习(MBRL)与Lyapunov方法相结合,界定状态与动作的安全区域。通过在吸引域(ROA)内采样数据,利用近似动态规划(ADP)在保障安全的前提下提升控制性能。此外,引入高斯过程(GP)模型以增强控制器对逆变器参数不确定性的鲁棒性。数值仿真验证了所提算法的有效性。

English Abstract

This study investigates a safe reinforcement learn-ing algorithm for grid-forming(GFM)inverter based frequency regulation.To guarantee the stability of the inverter-based re-source(IBR)system under the learned control policy,a model-based reinforcement learning(MBRL)algorithm is combined with Lyapunov approach,which determines the safe region of states and actions.To obtain near optimal control policy,the control performance is safely improved by approximate dynam-ic programming(ADP)using data sampled from the region of attraction(ROA).Moreover,to enhance the control robustness against parameter uncertainty in the inverter,a Gaussian pro-cess(GP)model is adopted by the proposed algorithm to effec-tively learn system dynamics from measurements.Numerical simulations validate the effectiveness of the proposed algorithm.
S

SunView 深度解读

该安全强化学习算法对阳光电源PowerTitan储能系统和ST系列储能变流器的构网型控制具有重要应用价值。研究提出的Lyapunov约束下的模型强化学习方法,可直接应用于GFM模式下的频率调节优化,在保证系统稳定性前提下提升调频性能,这与阳光电源储能系统参与电网一次调频的应用场景高度契合。引入的高斯过程模型增强参数鲁棒性,可解决实际工程中逆变器参数漂移和环境变化问题。该技术可集成至iSolarCloud平台,实现自适应控制策略在线优化,提升储能系统在弱电网和微电网场景下的构网能力,增强产品在新型电力系统中的竞争力。