← 返回
受脑启发的协作式自动发电控制与大规模电动汽车集成
Brain-Inspired Collaborative Automatic Generation Control With Large-Scale Electric Vehicles Integration
| 作者 | Zhihong Liu · Lei Xi · Yue Quan · Chen Cheng · Jizhong Zhu |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2024年10月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 分布式电网 频率波动 近端类脑策略优化算法 多区域协同控制 频率稳定性 |
语言:
中文摘要
分布式能源、负荷与储能设备具有间歇性和强随机性,接入电网后易引发显著的频率波动。现有基于多智能体协同神经网络的控制算法易遭遇灾难性遗忘问题,难以在强随机扰动下实现最优控制。本文提出一种基于正交权重修正策略网络更新的近端受脑启发策略优化(PBPO)算法,赋予网络类脑上下文感知能力,从而加速多区域协同控制的收敛速度,有效抑制电网严重随机扰动引起的频率波动。通过大规模电动汽车接入场景下的两个负荷频率控制模型仿真验证,所提PBPO算法在收敛速度、频率稳定性及控制性能方面均优于多种强化学习算法。
English Abstract
Distributed energy sources, loads and storage equipment have intermittent and highly random characteristics, which can cause significant frequency fluctuations when they are integrated into a distributed power grid. The current multi-agent cooperative neural networks based algorithms in the distributed power grid would suffer from catastrophic forgetting issues, which might be difficult in achieving optimal control under strong random disturbances. Hence, this paper proposes a proximal brain-inspired policy optimization (PBPO) algorithm with an orthogonal weight modification method in the weight update of the policy networks. Thus the policy network can have the brain-inspired contextual awareness capability. It can obtain faster convergence to the optimal solution of the multi-area cooperative control, mitigating heavy frequency fluctuations caused by serious random disturbances in the grid. The effectiveness of the proposed algorithm is validated via the simulation experiments on the two load frequency control models of the energy integration of large-scale electric vehicles in the grid. The proposed PBPO algorithm outperforms various reinforcement learning algorithms with faster convergence, higher frequency stability and better control performance.
S
SunView 深度解读
该脑启发协同控制技术对阳光电源储能与充电桩产品具有重要应用价值。针对PowerTitan大型储能系统参与电网AGC调频场景,PBPO算法的抗遗忘特性可显著提升多储能站点协同响应能力,解决ST系列储能变流器在强随机扰动下的频率稳定问题。对于新能源汽车业务,该算法可优化大规模充电桩V2G协同控制策略,实现车网互动场景下的快速功率调节。建议将正交权重修正机制融入iSolarCloud云平台的智能调度算法,结合构网型GFM控制技术,提升多区域储能电站的协同AGC性能,增强电网频率支撑能力,形成差异化竞争优势。