← 返回
模糊驱动医疗设备的电能质量评估与优化
Power Quality Assessment and Optimization in FUZZY-Driven Healthcare Devices
| 作者 | Dinesh Kumar Nishad · Saifullah Khalid · Rashmi Singh |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 可靠性分析 深度学习 强化学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 模糊技术 电能质量 能源管理系统 医疗设施 监测控制 |
语言:
中文摘要
模糊技术出现彻底改变医疗保健,赋能更智能医疗设备和设备。然而,这些模糊驱动系统的成功运行取决于高电能质量。本文引入创新模糊驱动能源管理系统,结合卷积神经网络CNN用于实时电能质量事件检测、长短期记忆LSTM网络用于预测分析以及强化学习用于优化控制。通过IEEE 13总线测试馈线广泛仿真,证明系统在检测和缓解电能质量扰动方面的卓越性能。基于CNN的检测在事件分类中达到97%准确率,而LSTM实现95%准确预测新兴问题。强化学习控制器相比传统方法,实现电压凹陷恢复快50%、谐波降低提升20%、停电期间关键负荷恢复快30%。讨论关键挑战包括数据质量关注、网络安全风险以及与遗留基础设施集成。该工作代表应用模糊技术于医疗保健电能质量管理的重大进步,提供平衡效率、可靠性和患者安全的综合解决方案。所提系统为现代化医疗设施电能质量监控和控制提供可扩展框架。
English Abstract
The advent of FUZZY technology has revolutionized healthcare, empowering smarter medical devices and equipment. However, the successful operation of these FUZZY-driven systems is contingent on high power quality. This paper introduces an innovative FUZZY-driven energy management system that combines convolutional neural networks (CNNs) for real-time power quality event detection, long short-term memory (LSTM) networks for predictive analytics, and reinforcement learning for optimized control. Through extensive simulations on an IEEE 13-bus test feeder, we demonstrate the system’s superior performance in detecting and mitigating power quality disturbances. The CNN-based detection achieves 97% accuracy in classifying events, while the LSTM enables 95% accurate prediction of emerging issues. The reinforcement learning controller achieves 50% faster voltage sag restoration, 20% greater harmonic reduction, and 30% faster critical load recovery during outages compared to conventional methods. Key challenges, including data quality concerns, cybersecurity risks, and integration with legacy infrastructure, are discussed. This work represents a significant advancement in applying FUZZY technology to healthcare power quality management, offering a comprehensive solution that balances efficiency, reliability, and patient safety. The proposed system provides a scalable framework for modernizing power quality monitoring and control in healthcare facilities.
S
SunView 深度解读
该电能质量管理技术对阳光电源储能系统在医疗等关键负荷场景具有重要参考。阳光PowerTitan工商业储能系统服务医院、数据中心等对电能质量要求极高的场所。该研究的CNN-LSTM-强化学习混合框架可集成到阳光储能变流器的智能控制系统,实现电能质量事件实时检测和快速响应。在医疗场景下,电压凹陷和谐波可能影响精密医疗设备运行。阳光ST储能系统采用该技术可提供快速电压支撑,相比传统方案响应速度提升50%。结合阳光GFM构网控制技术,该方案可为关键负荷提供高质量不间断电源,确保医疗设备安全运行,提升储能系统附加价值和市场竞争力。