← 返回
风电变流技术 储能系统 ★ 5.0

时空特征增强的多类型可再生能源与负荷不确定性功率跟踪预测框架

Spatio-temporal feature amplified forecasting framework for uncertain power tracking of multitype renewable energy and loads

作者 Yanli Liu · Ziwen Jia · Liqi Liu
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 400 卷
技术分类 风电变流技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 STFA framework is proposed for accurate high-efficiency forecasting of diverse renewable energy and load power uncertainties.
语言:

中文摘要

摘要 多类型可再生能源与负荷(如光伏、风电和电动汽车)的集成显著增加了电力供需两侧的不确定性,因此需要精确的预测技术以维持电网的安全稳定运行。然而,复杂的时空特征给现有预测方法带来了挑战,使其难以准确、及时地跟踪不确定性功率的瞬时变化。为此,本文提出了一种时空特征增强(STFA)预测框架,该框架可无缝嵌入当前先进的深度学习算法中。首先,构建了一个时空特征融合模块,逐步结合相空间重构、位置编码和掩码机制,通过一系列重组步骤增强时空特征,提升模型对不确定性波动的理解能力,从而支持训练过程。其次,在深度神经网络(DNNs)中引入自注意力机制(SAM),以辅助模型有效提取并利用关键特征。此外,设计了一种具有自适应双向调整机制的特殊动态加权损失函数,通过赋予突变变化更高的权重来优化训练过程。基于真实数据集的案例研究表明,STFA框架能够准确跟踪不确定性功率的波动,尤其在多个预测目标和不同深度神经网络中均表现出优异性能, consistently outperforming methods without the framework。

English Abstract

Abstract The integration of multitype renewable energy and loads such as PV, wind power, and EVs, has significantly increased uncertainty in both power supply and demand, which necessitates accurate forecasting to maintain the secure and stable operation of the power grid. However, challenges associated with complex spatio-temporal features hinder the existing forecasting methods from accurately and promptly tracking the instantaneous variations of uncertain power. Therefore, this paper proposes a spatio-temporal feature amplified (STFA) forecasting framework, which can be seamlessly incorporated into state-of-the-art deep learning algorithms. First, a spatio-temporal feature integrated module is constructed that progressively combines phase space reconstruction, positional encoding, and mask. The series of reorganized steps enhance the spatio-temporal features to support training by improving models understanding of uncertain fluctuations. Then, a self-attention mechanism (SAM) is integrated into the deep neural networks (DNNs) to assist training in effectively extracting and utilizing key features. Additionally, a special dynamic weighted loss function with an adaptive bidirectional adjustment mechanism is designed to optimize training by assigning greater importance to abrupt changes. Case studies based on real-world datasets show that the STFA framework accurately tracks fluctuations in uncertain power, especially across multiple prediction targets and DNNs, consistently outperforming methods without the framework.
S

SunView 深度解读

该时空特征增强预测框架对阳光电源多条产品线具有重要应用价值。针对光伏SG系列逆变器,可通过精准预测辐照波动优化MPPT算法响应速度;对ST系列储能变流器和PowerTitan系统,能提升功率调度精度,降低电池循环损耗;在充电桩业务中可预测EV负荷峰谷,优化充电策略。该框架的自适应动态加权损失函数特别适合处理新能源突变工况,可集成至iSolarCloud平台实现预测性运维,提升GFM/VSG控制策略在高渗透率场景下的稳定性,为源网荷储协同控制提供技术支撑。