← 返回
基于MCTS与IPSO算法的农村地区分布式风电储能系统选址定容双层优化方法
A bi-level optimization approach for siting and sizing of distributed wind-storage power systems in rural areas based on MCTS and IPSO algorithms
| 作者 | Dongran Songa · Keli Chena · Runxin Chena · Xinyu Fana · Jian Yanga · Mi Donga · M.Talaat · M.H.Elkholy |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 342 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Wind-storage planning model for rural [distribution network](https://www.sciencedirect.com/topics/engineering/electric-power-distribution "Learn more about distribution network from ScienceDirect's AI-generated Topic Pages"). |
语言:
中文摘要
摘要 随着风力发电快速扩张导致土地资源日益紧张,农村地区因其丰富的风能资源和空间优势,已成为分布式风电部署的战略枢纽。本研究针对农村配电网(RDN)中风力发电机组系统(WTGS)的扩展需求,提出一种融合蒙特卡洛树搜索(MCTS)与多目标改进粒子群优化(IPSO)算法的双层优化框架。上层采用MCTS算法对WTGS和储能系统(ESSs)的选址与定容进行优化,以最小化年度配置成本;下层采用IPSO算法协调WTGS与ESS的运行,降低年度运行成本并提升电网可靠性。相较于传统算法,所提算法在大规模变量优化问题中显著提高了优化效率。此外,该框架引入动态功率分配策略,实现各储能系统荷电状态(SOC)的均衡。在广东省典型农村配电网中的应用结果表明,规划期内年综合成本约为2824万元人民币,节点电压越限概率为0%,日均负荷中断率0.523%,弃风率为0.589%,整体电网可靠性达99.739%。本研究推动了可再生能源在农村配电网中的集成,为我国最新政策提供了技术支撑,并为全球农村地区低碳化发展提供了可复制的示范模型。
English Abstract
Abstract With the escalating land scarcity caused by rapid wind power expansion, rural areas have emerged as strategic hubs for distributed wind power deployment due to their abundant wind resources and spatial advantages. This study addresses the expansion needs of wind turbine generator system (WTGS) in rural distribution network (RDN) by proposing a bi-level optimization framework synergizing Monte Carlo Tree Search (MCTS) and multi-objective Improved Particle Swarm Optimization (IPSO). The upper layer employs MCTS to optimize the siting and sizing of WTGS and energy storage systems (ESSs), minimizing annual configuration costs. The lower layer utilizes IPSO to coordinate the operation of WTGS and ESS, reducing annual operational costs while enhancing grid reliability. The proposed algorithm significantly enhances the optimization efficiency compared to conventional algorithms in large-scale variable optimization. Moreover, it incorporates a dynamic power allocation strategy to balance the state-of-charge (SOC) across all ESSs. Implemented in a typical RDN in Guangdong Province, the framework delivers optimized outcomes: an annual comprehensive cost of about 28.24 million CNY over the planning period, a node voltage violation probability of 0 %, a daily average load interruption rate of 0.523 %, a wind curtailment rate of 0.589 %, and an overall grid reliability of 99.739 %. This work advances renewable energy source integration in RDN, providing technical support for the China’s latest policy and offering a replicable model for global rural decarbonization.
S
SunView 深度解读
该双层优化框架对阳光电源ST系列储能变流器和PowerTitan系统在农村配电网应用具有重要价值。MCTS-IPSO算法可优化储能容量配置,降低28.24%综合成本;动态功率分配策略可提升多储能系统SOC均衡控制,延长电池寿命;99.739%电网可靠性验证了风储协调运行能力。建议将该算法集成到iSolarCloud平台,实现农村分布式储能的智能选址定容与预测性运维,支撑公司在乡村零碳化市场的战略布局。