← 返回
风电变流技术 储能系统 机器学习 ★ 5.0

风力发电机高级功率曲线建模:基于SGBRT与灰狼优化的多变量方法

Advanced power curve modeling for wind turbines: A multivariable approach with SGBRT and grey wolf optimization

语言:

中文摘要

准确的功率曲线建模对于提升并网风力发电机(WTs)的运行效率和性能至关重要。为了提高建模质量并消除输入变量之间的相互影响,本文提出了一种新颖的多变量功率曲线预测方法,该方法融合了先进的机器学习技术——随机梯度提升回归树(SGBRT)和灰狼优化算法(GWO),并结合创新的数据预处理和特征选择方法。具体研究工作与创新点如下:1)在二维Copula空间中对原始数据进行清洗,以风轮转速作为辅助判据并采用概率描述方式,以处理数据不确定性及非线性依赖关系;2)提出一种偏互信息(PMI)方法用于数据分析,在此基础上选取八个显著参数作为建模输入变量,在降低计算复杂度的同时提升了预测精度;3)建立基于SGBRT的多输入变量功率曲线预测模型,并通过GWO算法对其超参数进行优化,优化过程由综合均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)指标构成的适应度函数引导;4)利用实际运行风力机的SCADA数据进行验证,所提出的模型表现出优越性能,在所有风速区域均取得了最小的标准化残差(6.56%)、最低的RMSE(约27 kW)、最低的MAE(19.27 kW)以及最高的平均R²值(98.61%)。对比研究表明,所提方法优于现有方法,在风力发电机功率曲线建模的准确性、效率、鲁棒性和适应性方面均有显著提升。

English Abstract

Abstract Accurate power curve modeling is crucial for improving the operational efficiency and performance of grid-connected wind turbines (WTs). To enhance the modeling quality and eliminate input variable interactions, this paper proposes a novel multivariable power curve prediction approach that integrates advanced machine learning techniques, namely stochastic gradient boosting regression tree (SGBRT) and grey wolf optimization (GWO), with innovative data preprocessing and feature selection methods. The specific works and novelties are as follows. 1) The raw data is cleaned in a two-dimensional Copula space, using wind wheel speed as an auxiliary criterion and a probabilistic description, to handle data uncertainties and nonlinear dependencies. 2) A partial mutual information (PMI) method is presented for data characteristics analysis, based on which eight significant parameters are selected as modeling input variables, reducing computational complexity while enhancing prediction accuracy. 3) A power curve prediction model considering multiple input variables is established using SGBRT, and its hyperparameters are optimized through a GWO algorithm, guided by a fitness function combining the indicators of root mean square error (RMSE), mean absolute error (MAE) and R squared (R 2 ). 4) Validated with real SCADA data from WTs in service, the proposed model achieves superior performance, with the smallest standardized residuals (6.56 %), RMSE (around 27 kW), MAE (19.27 kW), and superior average R 2 (98.61 %) for all speed regions. Comparative studies indicate that the proposed approach outperforms existing methods, offering significant improvements in accuracy, efficiency, robustness and adaptability for WT power curve modeling.
S

SunView 深度解读

该风电功率曲线建模技术对阳光电源具有重要借鉴价值。其SGBRT+GWO优化算法可应用于iSolarCloud平台的光伏功率预测,提升ST储能系统的充放电策略优化精度。PMI特征选择方法可用于SG逆变器的MPPT算法改进,降低计算复杂度。二维Copula数据清洗技术适用于储能电站SCADA数据预处理,增强预测性维护能力。多变量建模思路可拓展至充电站负荷预测和虚拟同步机VSG参数自适应优化,提升系统鲁棒性和运行效率,支撑新能源并网控制技术升级。