← 返回
风电变流技术 储能系统 机器学习 ★ 5.0

面向风力机结构载荷与功率评估的机器学习应用:工程视角

Towards machine learning applications for structural load and power assessment of wind turbine: An engineering perspective

作者 Qiulei Wang · Junjie Hu · Shanghui Yang · Zhikun Dong · Xiaowei Deng · Yixiang Xu
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 324 卷
技术分类 风电变流技术
技术标签 储能系统 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A novel framework is introduced to evaluate power and loads at various design stages.
语言:

中文摘要

摘要 近几十年来,日益增长的能源需求加速了风电场的建设,对风力机性能中精确的载荷与功率评估提出了更高的要求。传统方法依赖于解析尾流模型和性能曲线,在复杂入流条件下往往难以适应,导致在预测风机载荷和功率输出时存在显著的不准确性。本研究以NREL 5MW基准风力机为案例,提出一种新颖的两阶段框架,用于应对风电场规划与开发各个阶段中的上述挑战。第一阶段是在初步设计阶段推导简化推力调制因子的推荐值,从而快速评估对风电场优化至关重要的最大推力载荷和疲劳推力载荷。第二阶段聚焦于详细设计阶段的机器学习模型的设计与训练。基于LightGBM的梯度提升框架为风力机载荷与功率评估提供了全面的方法,提升了评估的精度与效率。所提出的模型在预测准确性方面实现了显著提升,在功率、峰值载荷和损伤等效载荷评估中,平均决定系数(R-Squared)分别达到0.995、0.988和0.995。该框架简化了评估流程,增强了风电场设计中功率与载荷评估的准确性与速度,有望降低计算成本,并提高布局优化和尾流转向等下游任务的有效性。

English Abstract

Abstract Over the past decades, the increasing energy demand has accelerated the construction of wind farms , raising higher expectations for precise load and power assessments in wind turbine performance. Traditional methods, which rely on analytical wake models and performance curves, often fail to adapt to complex inflow scenarios, leading to significant inaccuracies in predicting turbine loads and power output . This research addresses these challenges by introducing a novel two-phase framework for various phases of wind farm planning and development, using the NREL 5MW baseline wind turbine as a case study. The first part involves deriving recommended values for simplified thrust modulation factors at the preliminary design phase , enabling swift evaluation of maximum and fatigue thrust loads crucial for wind farm optimization. The second part focuses on designing and training a machine learning model at the detailed design phase. A gradient-boosting-based framework based on LightGBM provides comprehensive methods for assessing wind turbine load and power, enhancing the precision and efficiency of these assessments. The proposed model achieves significant improvements in predictive accuracy, achieving mean R-Squared of 0.995, 0.988, and 0.995 for power, peak load, and damage equivalent load evaluation, respectively. The framework streamlines the assessment process, enhancing both the accuracy and speed of power and load evaluations for wind farm design. This is expected to reduce computational costs and improve the effectiveness of downstream tasks, such as layout optimization and wake steering.
S

SunView 深度解读

该机器学习框架对阳光电源风电变流器及储能系统具有重要价值。通过LightGBM模型实现风机负载与功率的高精度预测(R²>0.98),可优化ST系列PCS的功率调度策略和PowerTitan储能系统的充放电控制。推荐推力调制因子方法可应用于iSolarCloud平台的预测性维护模块,结合GFM控制技术提升风储协同场景下的电网支撑能力。该双阶段评估框架可降低风电场布局优化的计算成本,为阳光电源风电变流器产品的尾流控制算法提供数据驱动的创新思路,增强复杂入流工况下的功率预测准确性。