← 返回
基于量子机器学习的风力涡轮机状态监测:研究现状与未来展望
Quantum machine learning based wind turbine condition monitoring: State of the art and future prospects
| 作者 | Zhefeng Zhang · Yueqi Wu · Xiandong Ma |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 332 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 机器学习 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An inclusive review of wind turbine condition monitoring by quantum machine learning. |
语言:
中文摘要
摘要 近几十年来,风能作为一种广受欢迎的可再生能源,得到了广泛的发展和应用。有效的状态监测与故障诊断对于保障风力涡轮机的可靠运行至关重要。尽管传统的机器学习方法已在风力涡轮机状态监测中得到广泛应用,但在处理大规模、高维度且复杂的數據集时,这些方法常常面临诸如特征提取复杂、模型泛化能力有限以及计算成本高等挑战。量子计算的兴起为机器学习算法开辟了全新的范式。量子机器学习结合了量子计算与机器学习的优势,具备超越经典计算能力的潜力。本文首先回顾了当前基于机器学习的风力涡轮机状态监测技术的应用现状及其局限性;随后介绍了量子计算的基本原理、量子机器学习算法及其应用,涵盖基于量子的特征提取、用于故障检测的分类与回归方法,以及利用量子神经网络进行预测性维护的研究进展。通过对比分析发现,即使未经充分优化,量子机器学习方法也能达到与优化后的传统机器学习方法相当的精度水平。本文还探讨了量子机器学习在实际应用中所面临的挑战,并展望了未来的研究与发展方向。本综述旨在填补现有文献中的空白,为风力涡轮机状态监测提供一种新的范式方法。通过推动量子机器学习在该领域的应用,最终目标是提升风力发电系统的可靠性与运行效率。
English Abstract
Abstract Wind energy , as a popular renewable resource, has gained extensive development and application in recent decades. Effective condition monitoring and fault diagnosis are crucial for ensuring the reliable operation of wind turbines . While conventional machine learning methods have been widely used in wind turbine condition monitoring, these approaches often face challenges such as complex feature extraction, limited model generalization, and high computational costs when dealing with large-scale, high-dimensional, and complex datasets. The emergence of quantum computing has opened up a new paradigm of machine learning algorithms. Quantum machine learning combines the advantages of quantum computing and machine learning, with the potential to surpass classical computational capabilities. This paper firstly reviews applications and limitations of the state-of-the-art machine learning-based condition monitoring techniques for wind turbines . It then reviews the fundamentals of quantum computing, quantum machine learning algorithms and their applications, covering quantum-based feature extraction, classification and regression for fault detection and the use of quantum neural networks for predictive maintenance. Through comparison, it is observed that quantum machine learning methods, even without extensive optimization, can achieve accuracy levels comparable to those of optimized conventional machine learning approaches. The challenges of applying quantum machine learning are also addressed, along with the future research and development prospects. The objective of this review is to fill a gap in the published literature by providing a new paradigm approach for wind turbine condition monitoring. By promoting quantum machine learning in this field, the reliability and efficiency of wind power systems are ultimately sought to be enhanced.
S
SunView 深度解读
量子机器学习在风电状态监测中的应用为阳光电源智能运维体系提供前瞻性技术路径。该技术可集成至iSolarCloud平台,提升ST储能系统和SG逆变器的预测性维护能力。量子算法在高维数据特征提取和故障分类方面的优势,能有效解决大规模新能源场站设备健康管理中的计算瓶颈,为功率器件(SiC/GaN)热管理预警、三电平拓扑故障诊断等场景提供更高效的AI解决方案,助力构建下一代智能化运维生态系统。