← 返回
风电变流技术 储能系统 深度学习 ★ 5.0

混合电动汽车集群随机充电行为下的异构聚合控制模型

Heterogeneous Aggregation Control Model for Hybrid EV Clusters with Random Charging Behavior

作者 Xin Wu · Xinyu Jiang · Lijuan Yao · Gangjun Gong
期刊 IEEE Transactions on Power Systems
出版日期 2025年6月
技术分类 风电变流技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电动汽车 聚合控制 参数异质性 随机特性 可再生能源跟踪
语言:

中文摘要

随着大量电动汽车无序接入电网,将其聚合为统一系统并调控其功率输出以支持供需平衡具有重要意义。针对混合电动汽车集群参数异构、随机启停带来的聚合与控制难题,本文提出一种聚合控制模型。首先构建异构电动汽车的等效聚合模型,并采用径向基函数(RBF)神经网络辨识等效参数;其次引入随机数量修正机制提升模型精度;最后利用滑模控制实现聚合功率跟踪。仿真验证了模型在不同异构场景下对风电与光伏出力的跟踪能力,结果表明该模型具备良好的控制精度、稳定性和用户舒适性。

English Abstract

With a large population of electric vehicles (EVs) widely connecting to the grid, uniformly aggregating EVs as a system and controlling the system to provide considerable power transfer capacity is significant to support the supply-demand balance. The system includes hybrid EV clusters of different parameters with random arrival and departure, resulting in the problems of parameter heterogeneity and randomness in aggregation and control. The parameter heterogeneity incurs different charging response characteristics. So, it's of great difficulty to aggregate and control heterogeneous EVs. Besides, the aggregation accuracy is also affected by random arrival and departure numbers. To address these issues, an aggregation control model is proposed to integrate hybrid EV clusters uniformly. Firstly, an equivalent aggregation model for heterogeneous EVs is constructed and the radial basis function (RBF) neural network is used to obtain the equivalent aggregation parameters. Secondly, the modification of equivalent aggregation parameters due to random numbers is proposed to ensure the model's accuracy. Finally, the sliding mode control algorithm is applied to control the EV system's aggregated power for target power tracking services. The wind power and photovoltaic power as the consumption target are tracked by heterogeneous EVs of two scenarios with different heterogeneity in the simulation. The main verification of the proposed aggregation control performance is implemented. Besides, the special verification under more difference in parameter heterogeneity is also given. The metrics such as aggregation control accuracy, stability, user comfort are used to validate the model performance. Experiment results demonstrate that the proposed model can aggregate plentiful heterogeneous and random EVs as a uniform system for tracking the renewable energy output accurately.
S

SunView 深度解读

该研究对阳光电源充电桩集群管理和储能系统调度具有重要应用价值。基于RBF神经网络的异构聚合控制模型可优化充电桩群控系统的功率调度算法,提升电动汽车V2G/G2V双向功率控制精度。该技术可应用于阳光电源直流充电桩、ST系列储能变流器和PowerTitan大型储能系统,实现充放电功率的精准跟踪控制。特别是在大规模充电站场景下,该模型可提升系统对新能源波动性的平抑能力,增强储能系统与充电设施的协同调度效果。这对完善阳光电源智慧能源管理方案、提升产品竞争力具有重要启发意义。