← 返回
风电变流技术 储能系统 深度学习 ★ 5.0

提高风电功率预测精度:一种混合SNGF-RERNN-SCSO方法

Enhancing wind power forecasting accuracy: A hybrid SNGF-RERNN-SCSO approach

语言:

中文摘要

摘要 准确预测风电功率对于优化能源管理、提升电网稳定性至关重要。然而,由于风速模式具有间歇性和随机性的固有特征,风速与发电功率的预测面临显著挑战。本文提出的混合系统融合了表面正态伽abor滤波器(Surface Normal Gabor Filter, SNGF)、回忆增强型循环神经网络(recalling enhanced recurrent neural network, RERNN)以及沙猫群优化算法(sand cat swarm optimization, SCSO),命名为SNGF-RERNN-SCSO方法。SNGF能够有效降低噪声并优化风速数据,RERNN则可精确预测未来的风速变化,而SCSO进一步提升了模型的计算效率。所提技术能够在更短的计算时间内获得最优解。该方法在MATLAB平台上得以实现,并与现有方法如随机森林算法(Random Forest Algorithm, RFA)、循环神经网络(Recurrent Neural Network, RNN)以及吉萨金字塔建造算法(Giza Pyramid Construction)进行性能对比评估。实验结果表明,所提出的SNGF-RERNN-SCSO方法实现了最低的平均绝对误差(Mean Absolute Error, MAE)为0.1%,平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)为2%,以及均方根误差(Root Mean Square Error, RMSE)为0.3。此外,该方法还达到了98.06%的最高灵敏度,同时保持了0.3秒的最快执行时间。上述结果凸显了该模型在预测精度和计算效率方面的优越性,使其成为一种鲁棒且可扩展的风电功率预测解决方案。

English Abstract

Abstract Forecasting wind power accurately is essential for optimizing energy management, improving grid stability. However, predicting wind speed and power generation is inherently challenging due to the intermittent and stochastic nature of wind patterns. The proposed hybrid system integrates the Surface Normal Gabor Filter (SNGF), recalling enhanced recurrent neural network (RERNN) and sand cat swarm optimization, named as SNGF-RERNN-SCSO approach. The SNGF efficiently reduces noise and refines wind data, while RERNN accurately predicts future wind speeds. The model’s computational efficiency is further enhanced by SCSO. The system gives an optimal solution with less calculation time by using the proposed technique. Then, the proposed approach is put into practice in the MATLAB platform and its execution is assessed with present strategies like Random Forest Algorithm (RFA), Recurrent Neural Network (RNN) and Giza Pyramid Construction. The proposed SNGF-RERNN-SCSO achieves lowest Mean Absolute Error (MAE) of 0.1 %, Mean Absolute Percentage Error (MAPE) of 2%, and Root Mean Square Error (RMSE) of 0.3. Furthermore, the proposed technique accomplishes the highest sensitivity of 98.06% maintaining the fastest execution time of 0.3 s. This emphasizes the higher accuracy and computational efficiency of the model, making it a robust and scalable solution for wind power forecasting.
S

SunView 深度解读

该混合风电预测技术对阳光电源储能系统具有重要应用价值。SNGF-RERNN-SCSO模型实现0.1% MAE和0.3秒响应速度,可直接集成至ST系列PCS和PowerTitan储能系统的能量管理模块,优化风储协调控制策略。其高精度预测能力可增强GFM/GFL控制算法的前瞻性调度,提升电网稳定性。建议将该深度学习框架融入iSolarCloud平台,实现风光储一体化智能预测,为虚拟电厂场景提供毫秒级功率平衡决策支持,降低储能系统循环损耗,延长电池寿命。