← 返回
风电变流技术 储能系统 ★ 5.0

预算约束下的协作式可再生能源预测市场

Budget-Constrained Collaborative Renewable Energy Forecasting Market

作者 Carla Gonçalves · Ricardo J. Bessa · Tiago Teixeira · João Vinagre
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年1月
技术分类 风电变流技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源 功率预测 时空数据 激励机制 样条LASSO回归模型
语言:

中文摘要

准确的可再生能源发电功率预测对提升电力系统中可再生能源容量及实现可持续发展目标至关重要。本文强调将去中心化的时空数据融入预测模型的重要性,并针对数据分散所有权带来的挑战,提出促进数据共享的激励机制。主要贡献包括:a)通过比较分析推荐高效且可解释的样条LASSO回归模型;b)设计数据与分析市场中的 bidding 机制,确保数据提供者获得公平补偿,并支持买卖双方表达价格诉求。此外,提出一种结合价格约束、避免冗余特征分配的时间序列预测激励机制。实验结果表明,所提方法显著提升了预测精度,风力发电数据的均方根误差平均降低10%以上,同时为数据卖方带来可观的经济收益。

English Abstract

Accurate power forecasting from renewable energy sources (RES) is crucial for integrating additional RES capacity into the power system and realizing sustainability goals. This work emphasizes the importance of integrating decentralized spatio-temporal data into forecasting models. However, decentralized data ownership presents a critical obstacle to the success of such spatio-temporal models, and incentive mechanisms to foster data-sharing need to be considered. The main contributions are a) a comparative analysis of the forecasting models, advocating for efficient and interpretable spline LASSO regression models, and b) a bidding mechanism within the data/analytics market to ensure fair compensation for data providers and enable both buyers and sellers to express their data price requirements. Furthermore, an incentive mechanism for time series forecasting is proposed, effectively incorporating price constraints and preventing redundant feature allocation. Results show significant accuracy improvements and potential monetary gains for data sellers. For wind power data, an average root mean squared error improvement of over 10% was achieved by comparing forecasts generated by the proposal with locally generated ones.
S

SunView 深度解读

该研究的可再生能源预测市场机制对阳光电源的储能和光伏产品线具有重要应用价值。首先,高精度的时空预测模型可直接应用于PowerTitan储能系统的调度优化,提升储充策略的经济性。其次,样条LASSO回归方法可集成到iSolarCloud平台,为分布式光伏电站和储能系统提供更准确的发电/负荷预测。通过数据共享激励机制,可促进不同区域SG系列逆变器和ST系列储能系统的运行数据互通,实现群智能优化。这对提升阳光电源产品在微电网和虚拟电厂中的竞争力具有重要意义。建议将该技术优先应用于大型储能调度和分布式光储协同场景。