← 返回
风电变流技术
★ 5.0
应对可再生能源电力系统中的鸭子曲线:一种基于iTransformer的多任务学习净负荷预测模型
Tackling the duck curve in renewable power system: A multi-task learning model with iTransformer for net-load forecasting
| 作者 | Jixue Pei · Nian Liu · Jiaqi Shi · Yi Ding |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 326 卷 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | iTransformer algorithm is introduced into day-ahead net-load forecasting framework for typical duck curve scenraio. |
语言:
中文摘要
摘要 可再生能源的高比例渗透导致区域负荷模式发生显著变化,形成对电力系统运行方式产生深远影响的鸭子曲线现象。为实现对鸭子曲线场景的准确预测,本文提出一种结合iTransformer与多任务学习的日前净负荷预测方法,该方法综合考虑了光伏发电、风力发电和有功负荷等多种独立资源分量。首先,通过组合特征选择方法识别各单项预测任务的主导特征;随后,采用iTransformer作为主干网络构建具有强大学习时间依赖能力的预测模型;此外,将iTransformer与多任务学习相结合,以提取外部因素、各单项功率与综合功率在净负荷预测中的多重相关性知识;最后,通过分析各分量的周期性与波动性,构建适用于多任务模型的定制化损失函数。为验证所提预测方法的有效性,本文在四个不同区域和规模的实际数据集上开展了案例研究,相较于整体预测方法,均方根误差(RMSE)分别下降了14.30%、19.46%、15.93%和14.84%。结果表明,所提出的方法在鸭子曲线场景下具有较高的预测精度和稳定的性能表现。
English Abstract
Abstract High penetration of renewable energy leads to dramatic changes in regional load patterns, forming a duck curve phenomenon that profoundly affects the operation style of the power system. To obtain accurate prediction on the duck curve scenario, the paper proposes a day-ahead net-load forecasting method based on iTransformer and multi-task learning by considering various individual resource components, such as PV power, wind power, and active load. Firstly, the dominant features of individual prediction task are identified through a combined feature selection approach. Subsequently, iTransformer is employed as the backbone network to construct the forecasting model with robust temporal dependencies learning capabilities. Additionally, the iTransformer combined with multi-task extracts multi-correlations knowledge among external factors, individual power, and integrated power in net-load forecasting. Finally, a customized loss function tailored for the multi-task model is constructed by analyzing the periodicity and volatility of individual components. To validate the effectiveness of the proposed forecasting method, a case study is carried out on four practical datasets of different regions and scales, achieving 14.30%, 19.46%, 15.93% and 14.84% RMSE decline compared with integrated forecasting. The results show that the proposed method acquires high accuracy and stable performance on the duck curve scenario.
S
SunView 深度解读
该鸭子曲线净负荷预测技术对阳光电源储能系统具有重要应用价值。通过iTransformer多任务学习模型精准预测光伏、风电及负荷波动,可优化ST系列PCS的充放电策略,提升PowerTitan储能系统在高比例新能源场景下的调度效率。该方法识别的周期性和波动性特征可集成至iSolarCloud平台,实现日前能量管理优化,降低14-19%预测误差将显著提升储能系统经济性。建议将多任务预测算法融入GFM控制策略,增强电网支撑能力,并为光储充一体化场站提供智能调度依据。