← 返回
FDCA-DSTGCN:一种基于频域信息增益与动态趋势感知的风电场群功率日前预测模型
FDCA-DSTGCN: A Wind Farm Cluster Power Day-Ahead Prediction Model Based on Frequency Domain Information Gain and Dynamic Trend Sensing
| 作者 | Mao Yang · Jiajun Niu · Bo Wang · Dawei Huang · Xin Su · Chenglian Ma |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年5月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风电场集群功率预测 频域信息 动态趋势感知 动态时空图卷积网络 预测精度 |
语言:
中文摘要
准确的风电场群功率预测对大规模风电接入的新一代电力系统至关重要。现有建模方法忽略风向及频域信息的作用,导致空间信息利用不足,预测精度提升受限。为此,本文提出一种融合频域信息增益与动态趋势感知的风电场群日前功率预测模型。首先,基于图论与多信息渐进融合进行集群划分并设置虚拟信息节点;其次,提出时间窗内主导风向识别方法,构建基于主导风向与风速的动态加权有向图结构;进而,设计引入频域增益通道注意力机制的动态时空图卷积网络(FDCA-DSTGCN)完成预测。在中国内蒙古某风电场群的实证结果表明,所提方法较现有及传统预测方法归一化均方根误差降低1.13%–2.15%,验证了其有效性。
English Abstract
Accurate wind farm cluster power prediction (WFCPP) is of vital significance for new power systems with large-scale wind power integration. The current WFCPP modeling method ignores the important role of wind direction and frequency domain information, resulting in insufficient use of spatial information and difficult to improve the prediction accuracy. In order to solve the above problems, a day-ahead power prediction model for wind farm cluster power is proposed based on information gain in frequency domain and dynamic trend sensing. Firstly, a cluster division method based on graph theory and progressive fusion of multiple information is proposed, and a virtual information node is set up. Secondly, a method to identify prevailing wind direction under time window is proposed for subsets, and a dynamic weighted directed graph structure is designed based on prevailing wind direction and wind speed. Thirdly, a dynamic spatio-temporal graph convolutional network model with frequency domain gain channel attention mechanism (FDCA-DSTGCN) is proposed to integrate the above information and complete the prediction. Finally, the proposed method is applied to a wind farm cluster in Inner Mongolia of China. Compared with the existing and traditional prediction methods, the normalized root mean square error of the proposed method is reduced by 1.13%–2.15%, which verifies the effectiveness of the proposed method.
S
SunView 深度解读
该风电场群功率预测技术对阳光电源储能与电网侧产品具有重要应用价值。首先可应用于ST系列储能系统的调度优化,通过频域信息增益提升储能容量配置精度,优化充放电策略。其次可集成到iSolarCloud平台,为新能源电站群的智能运维提供更准确的功率预测支持。该模型的动态时空图卷积网络架构也可迁移应用于光伏电站群的发电预测,有助于SG系列逆变器的MPPT控制优化。特别是其风向识别方法对分布式储能调度具有重要参考价值,可提升PowerTitan等大型储能系统的调频调峰性能。