← 返回
基于时空图对比学习的风电功率预测
Spatiotemporal Graph Contrastive Learning for Wind Power Forecasting
| 作者 | Guiyan Liu · Yajuan Zhang · Ping Zhang · Junhua Gu |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年2月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风力发电预测 时空图对比学习 深度学习模型 数据增强 自适应图 |
语言:
中文摘要
精确且鲁棒的风电功率预测对电力系统的安全稳定运行至关重要。基于图卷积网络的混合时空预测模型因在空间特征提取方面的优势而受到广泛关注,但其性能易受数据噪声和缺失影响导致的图结构质量下降制约。本文提出一种基于时空图对比学习的混合深度学习模型,其编码器结合自适应图卷积网络与LSTM以捕捉细粒度时空依赖关系。为提升编码器对数据噪声的鲁棒性,我们在特征层和拓扑层引入数据增强,并设计了时序与空间双重视角的对比学习辅助任务。此外,通过融合静态图与可学习参数矩阵构建自适应图以捕获更全面的空间关联。在两个真实数据集上的实验结果表明,所提模型显著优于现有先进方法。
English Abstract
Accurate and robust wind power forecasting plays a crucial role in ensuring the safety and stability of the power system. Hybrid spatiotemporal forecasting models based on graph convolutional networks have received widespread attention due to their advantages in spatial feature extraction. However, these methods are susceptible to the quality of the generated graph due to data noise and missing issues, resulting in suboptimal performance. In this paper, we propose a hybrid deep learning model based on spatiotemporal graph contrastive learning to address the above issues. Specifically, the model's encoder combines an adaptive graph convolutional network with LSTM to capture fine-grained spatiotemporal dependencies. To enhance the robustness of the encoder against data noise, we apply feature-level and topology-level data augmentation techniques to the model's input and design two contrastive learning auxiliary tasks from the temporal and spatial dimensions, respectively. Furthermore, to capture more comprehensive spatial correlations, we construct an adaptive graph by fusing the static graph with a learnable parameter matrix. Extensive experimental results on two real-world datasets demonstrate that our proposed model significantly outperforms other state-of-the-art methods.
S
SunView 深度解读
该风电功率预测技术对阳光电源储能和智能运维产品线具有重要应用价值。首先可集成至ST系列储能变流器和PowerTitan系统的能量管理系统(EMS)中,提升风储联合运行的调度精度。其次,该技术的时空图对比学习方法可优化iSolarCloud平台的预测算法,提高新能源电站群的发电预测准确性。特别是其抗噪声和数据缺失的特性,可提升阳光储能系统在复杂电网环境下的调度可靠性。建议将此技术应用于分布式储能群控和大型风光储项目的智能调度优化中,可显著提升系统运行效率和经济效益。