找到 7 条结果
基于时空图对比学习的风电功率预测
Spatiotemporal Graph Contrastive Learning for Wind Power Forecasting
Guiyan Liu · Yajuan Zhang · Ping Zhang · Junhua Gu · IEEE Transactions on Sustainable Energy · 2025年2月
精确且鲁棒的风电功率预测对电力系统的安全稳定运行至关重要。基于图卷积网络的混合时空预测模型因在空间特征提取方面的优势而受到广泛关注,但其性能易受数据噪声和缺失影响导致的图结构质量下降制约。本文提出一种基于时空图对比学习的混合深度学习模型,其编码器结合自适应图卷积网络与LSTM以捕捉细粒度时空依赖关系。为提升编码器对数据噪声的鲁棒性,我们在特征层和拓扑层引入数据增强,并设计了时序与空间双重视角的对比学习辅助任务。此外,通过融合静态图与可学习参数矩阵构建自适应图以捕获更全面的空间关联。在两个真实数据...
解读: 该风电功率预测技术对阳光电源储能和智能运维产品线具有重要应用价值。首先可集成至ST系列储能变流器和PowerTitan系统的能量管理系统(EMS)中,提升风储联合运行的调度精度。其次,该技术的时空图对比学习方法可优化iSolarCloud平台的预测算法,提高新能源电站群的发电预测准确性。特别是其抗噪...
基于OWT-STGradRAM的超短期时空风速预测
Ultra-Short-Term Spatio-Temporal Wind Speed Prediction Based on OWT-STGradRAM
Feihu Hu · Xuan Feng · Huaiwen Xu · Xinhao Liang 等5人 · IEEE Transactions on Sustainable Energy · 2025年2月
考虑风电场中风机站点的方向与距离特征有助于提升风电功率预测精度。本文提出一种基于正交风向变换时空梯度回归激活映射(OWT-STGrad-RAM)的深度学习时空预测方法。该模型将风电场编码为图像,各风机作为图像中的点,通过时空融合卷积网络集成风速、温度和气压等多源数据进行特征融合与预训练,构建特征数据集。利用OWT消除不同主导风向的影响,结合STGrad-RAM刻画风机节点间的方位与距离关系,增强空间特征的可解释性,并用于风速预测。实验结果表明,所提方法在预测精度上显著优于对比模型。
解读: 该风速预测技术对阳光电源的储能和风电产品具有重要应用价值。OWT-STGradRAM模型通过深度学习实现的高精度风速预测,可优化ST系列储能变流器的调度策略和PowerTitan储能系统的容量配置。在风电场应用中,该技术可提升风电并网点功率预测精度,有助于改进储能系统的功率平滑控制和调频调峰性能。模...
一种端到端集成学习方法以提升风电功率预测
An End-to-End Ensemble Learning Approach for Enhancing Wind Power Forecasting
Yun Wang · Houhua Xu · Yaohui Huang · Fan Zhang 等6人 · IEEE Transactions on Sustainable Energy · 2025年6月
精确的风电功率预测对电网稳定性和可靠高效的电力供应至关重要。针对现有集成模型多阶段建模易导致误差累积、训练低效及基学习器数量有限造成预测多样性不足的问题,本文提出MG-DS模型。该模型基于Dempster-Shafer证据理论,将基模型学习与集成学习统一于端到端框架中,包含全MLP非线性特征提取、GRU与交叉注意力基预测生成,以及基于DS理论的自集成模块,并引入“放大镜”机制增强预测多样性。此外,提出DS自集成(DSSE)插件以融合RNN与非RNN基预测器。在五个风电数据集上的实验验证了MG-D...
解读: 该端到端集成学习预测方法对阳光电源储能与风电产品线具有重要应用价值。MG-DS模型的高精度功率预测可直接应用于ST系列储能变流器的调度优化和PowerTitan储能系统的容量规划。其'放大镜'机制和DS自集成技术可提升iSolarCloud平台对风电场功率预测的准确性,有助于优化储能调度策略。该技术...
基于Transformer网络和专家优化器的小时级风电功率预测深度学习模型
A Deep Learning Model Using Transformer Network and Expert Optimizer for an Hour Ahead Wind Power Forecasting
Anushalini Thiyagarajan · B. Sri Revathi · Vishnu Suresh · IEEE Access · 2025年1月
精准的风电功率预测对可再生能源平台运行至关重要,可帮助电力系统更好地管理供应并保证电网可靠性。本文提出一种新型改进型孪生Transformer网络模型,采用多注意力机制增强对不同输入序列的关注能力,更好地捕捉风电预测的长期依赖关系。采用自适应山地瞪羚优化器对PID控制器参数进行微调,实现最小均方误差和THD。在1500kW容量的实时数据集上测试,MST-Net能够紧密跟踪实际功率趋势。
解读: 该深度学习预测技术可集成到阳光电源智慧风电云平台。通过Transformer架构实现高精度小时级风电功率预测,优化风电场能量管理和电网调度策略,降低弃风率,提升风电并网的经济性和可靠性,为大规模风电接入提供精准的功率预测支持。...
具有缺失数据容忍性的概率风力发电预测:一种端到端非参数方法
Probabilistic Wind Power Forecasting With Missing Data Tolerance: An End-to-End Nonparametric Approach
Zichao Meng · Ye Guo · Chenhao Zhao · IEEE Transactions on Sustainable Energy · 2025年9月
针对传感器故障、通信问题或测量中断导致的缺失数据问题,本文提出一种端到端非参数概率风力发电预测方法,集成缺失数据填补机制。该方法包含端到端训练与在线应用两个阶段:训练阶段通过迭代填补缺失数据并优化模型损失函数;应用阶段则持续填补实时观测数据以实现多步概率预测。相比现有方法,本方法无需假设分布类型,且通过联合优化提升填补质量与预测性能。实验表明,该方法在不同缺失率下均优于传统两阶段及参数化端到端方法,尤其在多步预测中表现更优。
解读: 该端到端非参数预测方法对阳光电源的储能和风电产品线具有重要应用价值。首先可应用于ST系列储能变流器的功率预测与调度优化,提升PowerTitan大型储能系统的调度效率。其次可集成到iSolarCloud平台,增强风电场发电量预测和运维预警能力。该方法的缺失数据容忍机制可显著提升阳光电源设备在恶劣环境...
基于Wind2vec-BERT模型的短期风功率预测
Short-Term Wind Power Prediction Based on Wind2vec-BERT Model
Miao Yu · Jinyang Han · Honghao Wu · Jiaxin Yan 等5人 · IEEE Transactions on Sustainable Energy · 2024年11月
在新能源发展背景下,短期风功率预测的精度要求日益提高。针对风电出力受多重因素影响而具有随机性和波动性,且现有神经网络方法多忽略输入变量间交互作用的问题,本文探索BERT算法在风功率预测中的应用。提出Wind2vec变量嵌入方法以更高效拟合时序变量关系,并结合GARCH模型对预测结果进行波动性建模优化。采用自适应计算时间(ACT)方法对BERT主干网络参数进行微调,增强其对电力序列输入的适应性。通过双向注意力机制与Transformer架构捕捉历史风数据中的细粒度时序依赖关系。基于中国南方电网实际...
解读: 该研究的Wind2vec-BERT预测模型对阳光电源的储能与风电产品线具有重要应用价值。可直接应用于ST系列储能变流器的能量调度优化和PowerTitan大型储能系统的容量配置,提升系统经济性。BERT-GARCH-M模型的高精度预测能力可集成到iSolarCloud平台,优化风储联合运行策略,提升...
通过数值天气预报模型的偏差校正技术提升风力发电预测精度
Enhancing Wind Power Forecasts via Bias Correction Technologies for Numerical Weather Prediction Model
Cheng-Liang Huang · Yuan-Kang Wu · Quoc-Thang Phan · Chin-Cheng Tsai 等5人 · IEEE Transactions on Industry Applications · 2025年2月
摘要:随着能源转型的持续推进以及风力发电装机容量的不断增加,近期研究进展表明,准确的数值天气预报(NWP)能够提高风电功率预测的质量。虽然大多数研究主要关注经过偏差校正的数值天气预报对风速的影响,但很少有研究探讨经过偏差校正的数值天气预报与风电功率预测之间的关系。因此,本研究旨在通过对数值天气预报得出的风速应用偏差校正技术来改进风电功率预测。具体而言,本研究制定了一种合理的后处理策略来修正数值天气预报的输出结果。采用衰减平均法和概率匹配均值法,系统地对三种不同的数值天气预报模型——即雷达天气研究...
解读: 该研究对阳光电源的风电和储能产品线具有重要应用价值。通过数值天气预报偏差校正技术,可显著提升风电场发电功率预测精度,这对我司ST系列储能变流器和PowerTitan储能系统的调度策略优化至关重要。具体而言,精确的风功率预测可用于:1)优化储能系统的充放电调度,提高风储联合运行效率;2)完善iSola...