← 返回
基于Wind2vec-BERT模型的短期风功率预测
Short-Term Wind Power Prediction Based on Wind2vec-BERT Model
| 作者 | Miao Yu · Jinyang Han · Honghao Wu · Jiaxin Yan · Runxin Zeng |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2024年11月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 可靠性分析 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风力发电预测 BERT算法 GARCH模型 Wind2vec方法 预测精度 |
语言:
中文摘要
在新能源发展背景下,短期风功率预测的精度要求日益提高。针对风电出力受多重因素影响而具有随机性和波动性,且现有神经网络方法多忽略输入变量间交互作用的问题,本文探索BERT算法在风功率预测中的应用。提出Wind2vec变量嵌入方法以更高效拟合时序变量关系,并结合GARCH模型对预测结果进行波动性建模优化。采用自适应计算时间(ACT)方法对BERT主干网络参数进行微调,增强其对电力序列输入的适应性。通过双向注意力机制与Transformer架构捕捉历史风数据中的细粒度时序依赖关系。基于中国南方电网实际数据验证表明,所提BERT-GARCH-M模型优于传统预测方法,显著提升了预测精度与可靠性,为可再生能源预测提供了新思路。
English Abstract
In the era of new energy development, the requirements for all aspects of short-term wind power forecasting tasks are increasing day by day. However, the power condition of wind farms is naturally stochastic and variable as it is affected by multiple factors. Current neural network approaches focus only on the propagation of unidirectional attention and ignore the interaction of input variables. To further improve the accuracy of wind power prediction, this paper explores the application of the Bidirectional Encoder Representations from Transformers (BERT) algorithm in wind power prediction. At the same time, GARCH series models are used for analysis and optimization after the prediction results are obtained to address the challenges posed by the inherent variability of wind. Meanwhile, Wind2vec, a new variable embedding method for wind power forecasting tasks, is proposed which can more efficiently fit the relationship between time series forecasting variables. The parameters are subsequently fine-tuned for the backbone layer of the BERT using the Adaptive Computation Time (ACT) method to make it more adaptive to the inputs of the power sequences of the power system. By BERT's bidirectional attention mechanism and transformer architecture, and refining it for the input layer, we aim to enhance the accuracy of wind power forecasts by capturing nuanced temporal dependencies within historical wind data. Using China Southern Power Grid real datasets demonstrates the effectiveness and correctness of the BERT-GARCH-M-based model in outperforming traditional forecasting methods. This research not only shows the adaptability of BERT to wind power prediction but also contributes to advancing the precision and reliability of renewable energy forecasts, paving the way for more sustainable energy utilization in the evolving landscape of new energy paradigms.
S
SunView 深度解读
该研究的Wind2vec-BERT预测模型对阳光电源的储能与风电产品线具有重要应用价值。可直接应用于ST系列储能变流器的能量调度优化和PowerTitan大型储能系统的容量配置,提升系统经济性。BERT-GARCH-M模型的高精度预测能力可集成到iSolarCloud平台,优化风储联合运行策略,提升电网友好性。其自适应计算和双向注意力机制也可借鉴应用于公司GFM/GFL控制算法的优化,增强储能变流器对电网波动的快速响应能力。这为阳光电源开发更智能的新能源并网产品提供了技术参考。