← 返回
风电变流技术 储能系统 可靠性分析 ★ 5.0

基于回声状态网络的实时误差补偿迁移学习以增强风力发电预测

Real-time Error Compensation Transfer Learning with Echo State Networks for Enhanced Wind Power Prediction

作者 Yingqin Zhua · Yue Liub · Nan Wangc · Zhao Zhao Zhang · Yuan Qiang Lid
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 379 卷
技术分类 风电变流技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Novel ETL-ESN model integrates computing and compensation layers for enhanced error prediction.
语言:

中文摘要

准确的风力发电预测对于高效的能源管理和电网稳定至关重要,能够帮助能源供应商平衡供需、优化可再生能源的集成、降低运行成本并提高电力系统的可靠性。回声状态网络(Echo State Network, ESN)由于其结构简单且训练速度快,被广泛应用于非线性动态系统的建模。然而,在处理高阶非线性复杂性时,ESN容易产生系统误差,导致模型精度下降。为克服这一问题,本文提出了误差补偿迁移学习回声状态网络(Error Compensation Transfer Learning Echo State Network, ETL-ESN),该模型结合了基于ESN的计算层和利用迁移学习构建的补偿层。本研究识别出误差自相关是导致ESN预测方差增大的关键因素,并通过引入误差补偿层来减少系统误差。此外,我们进一步采用迁移学习方法,防止在误差域中出现过拟合现象。基于真实世界风力发电数据的大量实验表明,与LSTM相比,ETL-ESN模型将训练时间从65秒减少至2秒,同时将平均绝对误差(MAE)最多降低了95%。相较于传统模型,ETL-ESN在不同风力发电机上的预测精度提升了95%至98%。本研究所使用的代码和数据集已公开于GitHub仓库https://github.com/zhuyingqin/Error-Transfer-ESN,以便后续研究者进行复现与进一步研究。

English Abstract

Abstract Accurate wind power forecasting is essential for efficient energy management and grid stability, enabling energy providers to balance supply and demand, optimize renewable energy integration, reduce operational costs, and enhance power grid reliability. The Echo State Network (ESN) is widely used for modeling nonlinear dynamic systems due to its simple and rapid training process. However, ESNs can be prone to system errors, leading to inaccurate models when handling high-order nonlinear complexities. To overcome this, we developed the Error Compensation Transfer Learning Echo State Network (ETL-ESN), which combines a computing layer based on ESN and a compensation layer using transfer learning. Our model identifies error auto-correlation as a key factor that increases variance in ESN predictions, and addresses this with an error compensation layer to reduce system errors. We further leverage transfer learning to prevent overfitting within the error domain. Extensive experiments using real-world wind power data demonstrate that the ETL-ESN model reduces training time from 65 s to 2 s compared to LSTM, while lowering MAE by up to 95%. The ETL-ESN achieves a 95% to 98% improvement in prediction accuracy across different turbines compared to traditional models. The code and datasets used in this study are available at GitHub repository https://github.com/zhuyingqin/Error-Transfer-ESN for further research and replication.
S

SunView 深度解读

该ETL-ESN风电预测技术对阳光电源储能系统具有重要应用价值。其2秒快速训练和95%以上精度提升可显著优化ST系列PCS的能量管理策略和PowerTitan储能系统的充放电调度。实时误差补偿机制可增强iSolarCloud平台的预测性维护能力,提升新能源并网稳定性。迁移学习方法为不同机型的GFM/GFL控制策略自适应优化提供新思路,助力构建更可靠的源网荷储协调控制系统,降低运营成本并提高电网友好性。