← 返回
风电变流技术 储能系统 可靠性分析 ★ 5.0

WPFormer:一种具有自相关性的时空图Transformer用于风电功率预测

WPFormer: A Spatial-Temporal Graph Transformer With Auto-Correlation for Wind Power Forecasting

作者 Xuefeng Liang · Qingshui Gu · Xiaochuan You
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年10月
技术分类 风电变流技术
技术标签 储能系统 可靠性分析
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风力发电 风力预测 异常数据 WPFormer框架 性能验证
语言:

中文摘要

风能作为技术成熟且便于开发的清洁能源,在能源结构中占据重要地位。精确的风电功率预测对制定发电计划、提升电力系统经济性与可靠性至关重要。然而,恶劣运行环境导致数据异常频发,加之风速自然变化、人为干预及机组状态耦合作用,使得风电出力呈现弱周期性和强波动性。为此,本文提出WPFormer框架,设计基于风电曲线的半监督WEDS双流评分模型用于异常检测与数据修复,并提出基于自注意力机制的FEDS特征选择方法。引入风机空间关联信息,结合自相关多序列分解与多头注意力机制,有效捕捉随机性背后的预测规律,克服弱周期性难题,实现对长期显著波动趋势的精准预测。在真实数据集上的实验表明,该方法性能达到业界领先水平。

English Abstract

The development and utilization of clean energy have been an important demand, with wind power standing out as a representative source due to its convenience and well-established technology. Accurate wind power forecasting holds immense significance as it facilitates the development of future generation plans, enhances the economy and reliability of power systems, and promotes the increased utilization of clean energy. However, an abundance of anomalous data stems from harsh turbine environments. The interplay among natural wind patterns, artificial interventions, and turbine states results in poor cyclicality and significant volatility in wind power generation. To address these challenges, we propose the WPFormer framework. Within this framework, we have designed a Wind powEr Dual-stream Scoring model (WEDS), a semi-supervised learning model based on wind power curves, tasked with anomaly detection and data repair. A Feature sElection methoD based on the Self-attention mechanism, known as FEDS, is also proposed for identifying valuable features. Furthermore, the spatial information of the wind turbines is introduced, and multiple series decomposition with autocorrelation and multi-headed attention is used to learn the expected prediction behind the randomness, overcome the weak periodicity, and predict the long-term significant volatility trend. Extensive experiments on real-world datasets demonstrate that WPFormer achieves state-of-the-art performance.
S

SunView 深度解读

该研究的时空图Transformer预测框架对阳光电源的储能和风电产品具有重要应用价值。特别是其异常检测与数据修复技术可优化ST系列储能变流器的运行策略和PowerTitan系统的调度效率。自相关多序列分解方法可提升iSolarCloud平台的预测性能,有助于风储联合项目的智能运维。该技术对构网型GFM控制和跟网型GFL控制的优化也有重要参考意义,可提高新能源并网系统的稳定性。建议在储能EMS和风电场智能调度等场景进行技术验证,进一步提升阳光电源在新能源领域的竞争力。