← 返回
风电变流技术 储能系统 可靠性分析 深度学习 ★ 5.0

基于自适应递归神经网络的ADRC附加阻尼控制器用于III型风电系统中次同步振荡抑制

Adaptive Recurrent Neural Network-Based ADRC Supplementary Damping Controller for SSO Mitigation in Type-3 Wind Power Systems

作者 Anju M · Shihabudheen K V · Mija S J
期刊 IEEE Transactions on Power Delivery
出版日期 2025年8月
技术分类 风电变流技术
技术标签 储能系统 可靠性分析 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源 次同步振荡 主动抗扰控制 径向基函数神经网络 阻尼控制器
语言:

中文摘要

可再生能源接入改变了电力系统动态特性,增加了双馈感应发电机串联补偿系统中次同步振荡(SSO)的风险。传统次同步阻尼控制器(SSDC)虽易于实现,但在非线性、强不确定性的风电系统中效果受限。本文提出一种基于递归径向基函数神经网络(RRBFNN)的主动抗扰控制(ADRC)附加阻尼控制器,利用RRBFNN逼近参数不确定性、非线性动态及周期性扰动引起的总扰动,提升ADRC对扩展状态观测器的适应能力。采用Lyapunov方法分析闭环系统稳定性,并基于2009年ERCOT事件及互联风电场模型进行仿真验证,通过控制器硬件在环实验对比现有阻尼控制器,表明所提方法在多种工况下具有优越的阻尼性能。

English Abstract

The integration of renewable energy sources impacts power system dynamics and increases the risk of sub-synchronous oscillations (SSO) in series-compensated doubly fed induction generators (DFIGs). The conventional subsynchronous damping controller (SSDC) is commonly used because of its ease of implementation. However, its effectiveness diminishes in wind- integrated systems characterized by nonlinear dynamics and significant operational uncertainties. To address this challenge, a supplementary damping controller utilizing a model-free control technique known as active disturbance rejection control (ADRC), based on a recurrent radial basis function neural network (RRBFNN) is proposed in this paper. The RRBFNN is employed to approximate the total disturbances resulting from parametric uncertainties, non-linear dynamics, and periodically varying disturbances. The utilization of RRBFNN aims to alleviate the constraints of conventional ADRC, specifically, its limited adaptability to manage the extended state observers (ESO). The stability of the closed-loop system with the proposed RRBFNN-ADRC is analyzed utilizing the Lyapunov method. The effectiveness of the proposed controller is evaluated using the 2009 Electric Reliability Council of Texas (ERCOT) event and an interconnected wind farm model. The controller hardware in loop (CHIL) experiments are conducted to evaluate the performance of the proposed controller in comparison to recently existing damping controllers under diverse operating conditions.
S

SunView 深度解读

该研究提出的RRBFNN-ADRC控制方案对阳光电源的储能变流器和大功率风电变流器产品具有重要参考价值。特别是ST系列储能变流器和风电产品线可借鉴其自适应抗扰控制思路,优化系统在弱电网下的次同步振荡抑制能力。该方案将神经网络与ADRC结合,可提升产品在复杂电网环境下的适应性,有助于提高PowerTitan等大型储能系统的并网稳定性。建议在下一代储能变流器控制器中考虑引入类似的智能自适应控制策略,增强产品在高渗透率新能源场景下的鲁棒性。