← 返回
风电变流技术 ★ 5.0

通过数值天气预报模型的偏差校正技术提升风力发电预测精度

Enhancing Wind Power Forecasts via Bias Correction Technologies for Numerical Weather Prediction Model

作者 Cheng-Liang Huang · Yuan-Kang Wu · Quoc-Thang Phan · Chin-Cheng Tsai · Jing-Shan Hong
期刊 IEEE Transactions on Industry Applications
出版日期 2025年2月
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 数值天气预报 风力发电预测 偏差校正 机器学习 预测精度
语言:

中文摘要

摘要:随着能源转型的持续推进以及风力发电装机容量的不断增加,近期研究进展表明,准确的数值天气预报(NWP)能够提高风电功率预测的质量。虽然大多数研究主要关注经过偏差校正的数值天气预报对风速的影响,但很少有研究探讨经过偏差校正的数值天气预报与风电功率预测之间的关系。因此,本研究旨在通过对数值天气预报得出的风速应用偏差校正技术来改进风电功率预测。具体而言,本研究制定了一种合理的后处理策略来修正数值天气预报的输出结果。采用衰减平均法和概率匹配均值法,系统地对三种不同的数值天气预报模型——即雷达天气研究与预报模型(RWRF)、确定性天气研究与预报模型(WRFD)以及包含20个成员的天气研究与预报集合预报系统(WEPS)——进行偏差校正,以改进风速预测。当处理有限的数值天气预报数据集时,这些偏差校正技术尤为适用。在对数值天气预报产品进行偏差校正之后,利用机器学习或深度学习模型进行了小时级和日前风电功率预测。结果表明,对数值天气预报得出的风速进行偏差校正后,预测精度得到了提高。与未进行偏差校正的实验进行对比分析发现,在验证月份,RWRF、WRFD和WEPS的风速均方根误差(RMSE)分别降低了46.13%、5.84%和3.82%,这表明风电功率预测精度有所提高。因此,验证了在典型的预测过程中进行数值天气预报校正的必要性。

English Abstract

With the ongoing energy transition and the increasing installation capacity of wind power generation, recent advancements in research have demonstrated that accurate numerical weather prediction (NWP) can improve the quality of wind power forecasting. While most studies have primarily focused on the effects of bias-corrected NWPs on wind speeds, few studies have explored the relationship between bias-corrected NWPs and wind power forecasts. Therefore, this study aimed to improve wind power forecasts by applying bias correction technologies to NWP-derived wind speeds. Specifically, this study established a judicious post-processing strategy to rectify NWP outputs. Three distinct NWP models—namely, the Radar Weather Research and Forecasting (RWRF), Deterministic Weather Research and Forecasting (WRFD), and a 20-member WRF ensemble prediction system (WEPS)—were systematically subjected to bias correction using decaying average and probability matched mean methodologies to improve wind-speed forecasts. These bias correction techniques are particularly pertinent when dealing with limited NWP datasets. Subsequent to the bias correction of NWP products, hourly and day-ahead wind power forecasts were performed using machine learning or deep learning models. The results indicated that forecasting accuracy was improved after the bias correction of NWP-derived wind speeds. Comparative analyses with experiments conducted without bias correction revealed a reduction in root mean square error (RMSE) for wind speed in RWRF, WRFD, and WEPS during validation months by 46.13%, 5.84%, and 3.82%, respectively, indicating enhanced wind power prediction accuracy. Therefore, the necessity of NWP correction in a typical forecasting process was verified.
S

SunView 深度解读

该研究对阳光电源的风电和储能产品线具有重要应用价值。通过数值天气预报偏差校正技术,可显著提升风电场发电功率预测精度,这对我司ST系列储能变流器和PowerTitan储能系统的调度策略优化至关重要。具体而言,精确的风功率预测可用于:1)优化储能系统的充放电调度,提高风储联合运行效率;2)完善iSolarCloud平台的智能预测功能,为客户提供更准确的发电量评估;3)提升电网友好型逆变器的并网控制性能。建议将该技术整合进公司智能运维平台,助力新能源电站的智慧化运营。