← 返回
一种端到端集成学习方法以提升风电功率预测
An End-to-End Ensemble Learning Approach for Enhancing Wind Power Forecasting
| 作者 | Yun Wang · Houhua Xu · Yaohui Huang · Fan Zhang · Hongbo Kou · Runmin Zou |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年6月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风力发电预测 集成学习模型 MG - DS模型 Dempster - Shafer理论 DSSE插件 |
语言:
中文摘要
精确的风电功率预测对电网稳定性和可靠高效的电力供应至关重要。针对现有集成模型多阶段建模易导致误差累积、训练低效及基学习器数量有限造成预测多样性不足的问题,本文提出MG-DS模型。该模型基于Dempster-Shafer证据理论,将基模型学习与集成学习统一于端到端框架中,包含全MLP非线性特征提取、GRU与交叉注意力基预测生成,以及基于DS理论的自集成模块,并引入“放大镜”机制增强预测多样性。此外,提出DS自集成(DSSE)插件以融合RNN与非RNN基预测器。在五个风电数据集上的实验验证了MG-DS优于主流预测模型与集成方法,且DSSE插件有效提升了集成性能。
English Abstract
Accurate wind power forecasts are crucial for grid stability, thereby ensuring a reliable and efficient power supply. To characterize the complicated fluctuation of wind power, numerous ensemble models with multiple base forecasters have been developed. However, most existing ensemble forecasting models contain several modeling stages, which increases the risk of error accumulation and inefficiency in model training. Moreover, the limited number of base forecasters results in forecasts with reduced diversity, thereby diminishing the performance of ensemble models. To address these challenges, MG-DS, a simple but efficient end-to-end ensemble learning model based on the Dempster-Shafer (DS) evidence theory, is proposed to unify base model learning and ensemble learning into a single process. It comprises an all-MLP-based nonlinear feature extraction module, a GRU and cross attention-based base forecast generation module, and a DS-based self-ensemble forecasting module with a DS-based magnifying glass to enhance the diversity of base forecasts. Further, a DS-based self-ensemble (DSSE) plugin is proposed to integrate the trained RNN-type and non-RNN-type base forecasters. Experiments on five wind power datasets show that MG-DS outperforms popular wind power forecasting models and ensemble techniques, and the effectiveness of the DSSE plugin is also validated in enhancing the performance of ensemble wind power forecasting.
S
SunView 深度解读
该端到端集成学习预测方法对阳光电源储能与风电产品线具有重要应用价值。MG-DS模型的高精度功率预测可直接应用于ST系列储能变流器的调度优化和PowerTitan储能系统的容量规划。其'放大镜'机制和DS自集成技术可提升iSolarCloud平台对风电场功率预测的准确性,有助于优化储能调度策略。该技术还可集成到风储一体化解决方案中,通过精准的功率预测提高储能系统的调峰填谷效率,降低储能配置成本。建议在ST6000储能变流器和PowerTitan 2.0系统中率先应用该预测算法,以提升产品竞争力。