← 返回
风电变流技术 ★ 5.0

一种面向多地点短期风速预测的以位置为中心的Transformer框架

A location-centric transformer framework for multi-location short-term wind speed forecasting

作者 Luyang Zhao · Changliang Liu · Chaojie Yang · Shaokang Liu · Yu Zhang · Yang Liab
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 328 卷
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风速预测 时空关系 空间相关性 预测性能 电力系统优化
语言:

中文摘要

准确的时空风速预测在电力系统优化和可再生能源效率提升中起着至关重要的作用。然而,传统模型通常将多个地点的历史风速数据合并到统一的特征通道中,这种做法削弱了其捕捉空间相关性的能力,从而降低了预测精度。本研究提出,在建模时空关系时保持各位置特有的差异性有助于提升预测性能。基于这一前提,本文构建了一种新颖的基于Transformer、具有以位置为中心架构的预测框架,并引入了若干关键创新:(1)一种时空门控融合单元,能够动态整合地理坐标与时间风速数据,同时保留位置特异性信息;(2)一种重构的Transformer结构,利用自注意力机制建模不同地点之间的空间相关性,并通过前馈神经网络捕捉时间依赖性;(3)一种双增强机制,结合可逆实例归一化以应对概念漂移问题,并引入频率通道注意力机制以充分利用频域特征。实验结果表明,该框架在多地点、多步长风速预测任务中显著提升了预测精度。这种更高的预测准确性直接支持了更高效的可再生能源管理与电网集成。

English Abstract

Abstract Accurate spatiotemporal wind speed forecasting plays a vital role in power system optimization and renewable energy efficiency. However, conventional models often combine historical wind speed data from multiple locations into uniform feature channels, which compromises their ability to capture spatial correlations and impairs forecasting accuracy. This study proposes that maintaining location-specific distinctions while modeling spatiotemporal relationships can enhance forecasting performance. Based on this premise, this study develops a novel Transformer-based framework with a location-centric architecture that introduces several key innovations: (1) a spatiotemporal gated fusion unit that dynamically integrates geographical coordinates with temporal wind speed data while preserving location-specific information, (2) a restructured Transformer that employs self-attention for modeling spatial correlations across locations while using feedforward networks to capture temporal dependencies, and (3) a dual-enhancement mechanism combining reversible instance normalization to address concept drift and a frequency channel attention mechanism to leverage frequency-domain characteristics. Experimental results show significant improvements in multi-location, multi-step wind speed forecasting accuracy. This enhanced precision directly supports more efficient renewable energy management and grid integration.
S

SunView 深度解读

该位置中心化Transformer风速预测框架对阳光电源新能源管理系统具有重要应用价值。精准的多点短期风速预测可直接优化ST系列储能变流器的充放电策略,通过时空关联建模提升风光储协调控制精度。其双重增强机制可集成至iSolarCloud平台的预测性维护模块,结合地理坐标与时序数据的门控融合单元能改进PowerTitan储能系统的多站点协同调度算法,提升电网友好型GFM控制的响应准确性,为大规模新能源并网提供更可靠的功率预测支撑,降低弃风率并优化储能配置经济性。