← 返回
一种新颖的数据驱动多步风功率点-区间预测框架,集成基于滑动窗口的双层自适应分解与多目标优化以平衡预测精度与稳定性
A novel data-driven multi-step wind power point-interval prediction framework integrating sliding window-based two-layer adaptive decomposition and multi-objective optimization for balancing prediction accuracy and stability
| 作者 | Xiwen Cui · Xiaoyu Yuab · Haowei Niu · Dongxiao Niu · Da Liu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 397 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The two-layer adaptive decomposition model with sliding window reduces noise and avoids information leakage. |
语言:
中文摘要
摘要 风能对大规模并网和实现碳中和至关重要,因此需要准确且稳定的预测方法来应对风电数据固有的随机性和复杂耦合特性。本研究提出了一种创新的数据驱动型点-区间预测框架,旨在克服现有模型仅关注预测精度而忽略预测所需稳定性的局限性,从而减少由此带来的不确定性。该框架首先引入异常值处理机制,并采用一种新的基于滑动窗口的双层自适应分解策略,在避免信息泄露的同时将风电数据分解为规律性子序列。随后通过Lempel-Ziv复杂度分析对这些子序列进行分类,以最小化计算冗余。进一步地,有针对性地部署先进模型——包括倒置Transformer(iTransformer)、TimesNet、Mamba2以及样本卷积交互网络(SCINet)——构成一种新型集成预测方法,以捕捉分解后子序列中的复杂时间依赖关系。接着引入一种开创性的多目标优化算法:在点预测中,该算法作为两阶段集成模块,对模型输出进行加权融合,以平衡点预测的精度与稳定性;在区间预测中,则作为参数优化模块,用于优化区间预测模型的带宽参数,从而平衡区间预测的精度与稳定性。通过对两个真实数据集进行实证分析和统计检验,相较于iTransformer模型,该框架显著降低了平均绝对误差(MAE)27.32%和58.51%,同时将误差标准差(STD)分别降低27.16%和77.72%。该集成预测架构建立了一个鲁棒性强的高精度、高稳定性点-区间预测框架。该框架通过可靠的不确定性量化,为电网运营商提供了更强的决策支持能力,对提升电力系统运行稳定性及优化可再生能源利用效率具有重要意义。
English Abstract
Abstract Wind power is critical for large-scale grid-connection and carbon neutrality , so accurate and stable predictions are needed to address the inherent randomness and complex coupling of wind power data. The study introduces an innovative data-driven point-interval prediction framework to overcome the limitations of current models that focus only on prediction accuracy, which leads to large uncertainties by ignoring the stability required for predictions. The proposed framework begins with an outlier processing mechanism and employs a new sliding window-based two-layer adaptive decomposition strategy that avoids information leakage while decomposing the wind power data into regular subsequences . These subsequences are then classified using Lempel-Ziv complexity analysis to minimize computational redundancy. Advanced models—including Inverted Transformer (iTransformer), TimesNet, Mamba2, and Sample Convolution Interaction Network (SCINet)—are strategically deployed to a new integrated forecasting method to capture the intricate temporal dependencies within the decomposed subsequences. A pioneering multi-objective optimization algorithm is then used, which in point prediction serves as a two-stage integration module for weighted fusion of model outputs to balance the accuracy and stability of point prediction. In interval prediction, it is used as a parameter optimization module to optimize the bandwidth parameter of the interval prediction model to balance the accuracy and stability of interval prediction. Through empirical analysis and statistical tests on two real datasets, the framework significantly reduces the mean absolute error (MAE) by 27.32 % and 58.51 %, and the error standard deviation (STD) by 27.16 % and 77.72 %, compared to iTransformer. The integration forecasting architecture establishes a robust framework for high-precision and high-stability point-interval forecasting. This framework provides grid operators with enhanced decision-support capabilities through reliable uncertainty quantification , making a substantial contribution to improving the operational stability of power systems and optimizing renewable energy utilization efficiency.
S
SunView 深度解读
该多目标优化风电预测框架对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。其点-区间预测方法可显著提升储能系统充放电策略的准确性与稳定性,MAE降低27-58%为iSolarCloud平台的预测性维护提供可靠的不确定性量化能力。多层自适应分解策略可集成至GFM/GFL控制算法,优化新能源并网的功率波动管理,增强电网侧储能系统的调度决策支持能力,提升可再生能源消纳效率与系统运行稳定性。