← 返回
一种基于张量的风电场动态等值建模聚类方法
A Tensor-Based Clustering Method for Dynamic Equivalent Modeling of Wind Farms
| 作者 | Yihao Yang · Yijun Xu · Wei Gu · Lamine Mili · Bo Sun · Shuai Lu |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年9月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 大型风电场 简化建模 张量分解聚类 降阶建模 网络聚合策略 |
语言:
中文摘要
采用详细风电机组模型仿真大规模风电场计算成本高昂,亟需兼顾精度的简化建模方法。针对复杂风速条件与网络结构带来的风电场暂态等值精度难题,本文首次提出一种基于张量分解的聚类方法,通过合理分组捕捉风电场高维动态特征,实现精确降阶建模。首先构建保持时空特性的张量结构数据集,进而设计兼顾稀疏性与平滑性的张量分解策略以提取低维特征并指导聚类;最后定制网络聚合策略降低功率损耗误差。多种布局、故障与风况下的仿真结果验证了该方法的优越性能。
English Abstract
Simulating large-scale wind farms (WFs) with detailed wind turbine (WT) models is computationally costly, which motivates exploration for simplified modeling strategies while maintaining accuracy. However, due to complicated wind speed conditions and network structure, it is still a challenge to achieve accurate transient equivalence of WFs. To address this problem, this paper proposed, for the first time, a tensor decomposition-based clustering method that can capture high-dimensional transient characteristics of WF to achieve precise reduced-order modeling through more rational grouping. More specifically, we first formulate a tensor-structure-based data set to preserve the intrinsic spatio-temporal properties of the dynamic WF responses. Then, a tensor decomposition strategy considering sparsity and smoothness is also proposed to extract the low-dimensional features that further assist us in the clustering design. Finally, we tailor an accurate WF network aggregation strategy to reduce power loss errors. The simulation results for different WF layouts, system faults, and wind scenarios reveal the excellent performance of the proposed method.
S
SunView 深度解读
该张量聚类建模方法对阳光电源的大型储能及风电产品具有重要应用价值。可直接应用于PowerTitan储能系统的多机组协调控制和ST系列储能变流器的群控优化,通过降维聚类提升计算效率。对于风电场接入的储能系统,该方法能更精确地预测风电波动特性,优化储能容量配置和调度策略。技术创新点在于通过张量分解捕捉高维动态特征,这一思路可借鉴到iSolarCloud平台的海量数据分析和智能诊断中,提升运维效率。建议在PowerTitan和ST系列产品的控制算法中验证该方法的工程应用效果。