← 返回
基于SCADA数据的周期增强型Informer模型用于短期风电功率预测
Periodic-Enhanced Informer Model for Short-Term Wind Power Forecasting Using SCADA Data
| 作者 | Zhao-Hua Liu · Long-Wei Li · Hua-Liang Wei · Ming Li · Ming-Yang Lv · Ying-Jie Zhang |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年4月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | SCADA数据 短期风电预测 数据处理 信息增强预测模型 多尺度深度融合 |
语言:
中文摘要
针对风电场SCADA系统提供的丰富运行与环境数据,提出一种周期增强型Informer模型用于短期风电功率预测。首先,采用基于v-p曲线与四分位法结合的方法滤除稀疏离群点,并利用DBSCAN算法去除功率曲线中的聚集噪声;其次,基于最大信息系数筛选多特征输入集以提升数据利用效率;进而设计时序卷积网络提取输入特征的标量投影,并融合局部与全局时间戳构建周期信息增强的嵌入层;最后,在Informer模型中引入多尺度深度融合模块,实现跨时间尺度特征的深层整合,有效避免了模型加深带来的资源浪费与过拟合问题。实验结果表明,该方法在真实SCADA数据上具有优异的预测性能。
English Abstract
Supervisory Control and Data Acquisition (SCADA) systems can collect abundant information about wind farm operation and environment. To better make use of SCADA data, a periodic-enhanced informer model for short-term wind power forecasting using scada data is proposed. Firstly, to effectively filter out noise in SCADA data, a v-p curve-based method is adopted by incorporating a quartile approach to remove sparse outliers; a density-based spatial clustering of applications with noise (DBSCAN) algorithm is then employed to eliminate stacked outliers from the power curve. Secondly, a multi-feature input set selection method based on Maximization Information Coefficient is introduced to make better use of the SCADA system data by reducing the number of features. Thirdly, a Temporal Convolutional Network (TCN) is designed to extract the scalar projection of the input set, followed by fusing the local time stamp and global time stamp to build the periodic information enhanced prediction model embedding layer. Subsequently, the enhanced input set is fed into an informer model to predict future wind power. Finally, considering the multiple temporal scales structure characteristics present in the dataset, a multi-scale deep fusion module is established in the informer model to deeply integrate the features of different scales. It can simultaneously avoid the resource waste and overfitting problems caused by increasing the network depth. The experimental results, which are obtained from several deep learning methods on real SCADA data, demonstrate that the suggested approach has good predictive capability.
S
SunView 深度解读
该周期增强型Informer模型对阳光电源的智能运维和储能系统具有重要应用价值。首先,该模型的多特征输入与时序预测技术可直接应用于iSolarCloud平台的发电预测模块,提升风光储多能互补系统的调度效率。其次,模型的周期性特征提取方法可优化ST系列储能变流器的能量管理策略,特别是在PowerTitan大型储能系统中实现更精准的充放电规划。此外,文中的数据预处理和多尺度特征融合技术也可迁移应用于光伏发电预测,为SG系列逆变器的MPPT控制提供优化参考。这些技术创新将显著提升阳光电源产品在新能源智能调度领域的竞争力。