← 返回
风电变流技术 ★ 5.0

MFFDM-WLS:一种基于多粒度特征的时序分层风速时间序列一致性预测方法

MFFDM-WLS: A multi-granularity feature-based coherent forecasting method for temporal hierarchical wind speed time series

作者 Yun Wang · Xiaocong Duana · Fan Zhang · Guang Wua · Runmin Zoua · Jie Wanc · Qinghua Hud
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 400 卷
技术分类 风电变流技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 MFFDM-WLS is specifically proposed for hierarchical wind speed forecasting.
语言:

中文摘要

摘要 风能因其清洁和可持续的特性,已成为全球能源系统的重要组成部分。然而,风速的间歇性和波动性给风电出力带来了显著的不确定性,对电网并网造成了挑战。此外,与单一粒度预测相比,多粒度风速预测能够提供更丰富的信息,更有利于风电场的运行与规划。因此,为进一步提高风速预测的准确性与可靠性,并获得满足分层一致性的多粒度预测结果,本文提出了一种针对时序分层风速时间序列的基于多粒度特征的一致性预测方法MFFDM-WLS。首先,提出一种基于多粒度特征融合的深度模型(MFFDM),用于生成基础预测值。MFFDM采用自下而上的自注意力模块和自上而下的自适应分解模块,实现不同粒度下风速特征的交互;利用压缩-激励网络和残差块提取各粒度下的特征;最后通过三种损失函数生成确定性与概率性基础预测。随后,对比了七种常见的协调技术,并根据其排序结果确定最优的协调技术,以获得最终的协调预测值。在四个真实数据集上进行的实验结果表明,基于分位数损失的MFFDM与基于加权最小二乘法(WLS)的协调技术相结合,在时序分层风速的确定性与概率性预测中均取得了最高的性能排序,且协调过程显著提升了预测效果。

English Abstract

Abstract Wind energy, known for its clean and sustainable characteristics, has become an integral part of the global energy system. However, the intermittency and fluctuation of wind speed introduce significant uncertainty in wind power generation, posing challenges for grid integration. Additionally, multi-granularity wind speed forecasting can provide richer information compared to single-granularity forecasting, which is more favorable for wind farm operation and planning. Therefore, to further enhance the accuracy and reliability of wind speed forecasting and to obtain multi-granularity forecasts that satisfy the hierarchical consistency, MFFDM-WLS, a multi-granularity feature-based coherent forecasting method for temporal hierarchical wind speed time series, is proposed in this study. First, a multi-granularity feature fusion-based deep model (MFFDM) is proposed to obtain the base forecasts. MFFDM employs a bottom-up self-attention module and a top-down adaptive decomposition module to interact the wind speed features at different granularities, and utilizes the squeeze-and-excitation network and residual block to obtain features at each granularity, and finally generates the deterministic and probabilistic base forecasts using three loss functions. Then, seven common reconciliation techniques are compared, and the best reconciliation technique is determined based on their ranks to obtain the final reconciled forecasts. Experimental results conducted on four real-world datasets demonstrate that the combination of quantile loss-based MFFDM and weighted least squares (WLS)-based reconciliation technique achieves the highest performance ranks both for deterministic and probabilistic forecasting of temporal hierarchical wind speed, and the reconciliation process significantly improves the forecasting results.
S

SunView 深度解读

该多粒度风速预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过时间层级一致性预测,可优化iSolarCloud平台的预测性维护算法,提升风储协同控制精度。多粒度特征融合方法可应用于GFM/GFL控制策略的自适应切换决策,增强电网友好型并网能力。概率预测结果可为ESS能量管理系统提供更可靠的充放电调度依据,降低风电波动对储能系统的冲击,延长PCS使用寿命,提高风储混合系统整体经济性。