找到 110 条结果
基于卷积神经网络、小波神经网络与掩码多头注意力机制的全球辐照度预测模型
A Global Irradiance Prediction Model Using Convolutional Neural Networks, Wavelet Neural Networks, and Masked Multi-Head Attention Mechanism
Walid Mchara · Lazhar Manai · Mohamed Abdellatif Khalfa · Monia Raissi 等5人 · IEEE Access · 2025年1月
准确预测全球辐照度对光伏系统尤其是太阳能电动汽车的能量管理至关重要。传统模型难以捕捉辐照数据中复杂的时空依赖性,导致在多变天气条件下预测精度受限。本文提出一种融合卷积神经网络(CNN)、小波神经网络(WNN)与掩码多头注意力(MMHA)机制的新型混合框架CNN-WNN-MMHA。CNN提取局部空间特征,WNN进行频域分解以捕获多尺度变化,MMHA建模时间依赖并编码位置信息。模型在突尼斯八年实测气候数据上训练与验证,实验表明其性能显著优于LSTM、BiLSTM和CNN-LSTM等先进方法,MAPE...
解读: 该混合深度学习辐照度预测模型对阳光电源多条产品线具有重要应用价值。在SG系列光伏逆变器中,可优化MPPT算法的前瞻性控制,提前调整功率跟踪策略;在PowerTitan储能系统中,精准的辐照度预测可优化充放电调度策略,提升光储协同效率;在iSolarCloud智能运维平台中,该模型可增强预测性维护能力...
家庭电池储能系统在配电网中控制的机器学习与MPC方法比较
Comparison of machine learning and MPC methods for control of home battery storage systems in distribution grids
Felicitas Mueller · Stevende Jongh · Claudio A.Cañizares · Thomas Leibfried 等5人 · Applied Energy · 2025年1月 · Vol.400
本文在主动配电网的影响及其交互作用背景下,提出并比较了采用传统优化技术与最先进的机器学习方法实现的家庭能源管理系统控制策略。首先介绍了基于模型预测控制算法的模型驱动方法,并将其在不同预测精度条件下与基于模仿学习和强化学习的无模型方法进行对比。以一种实用的、当前最先进的启发式规则控制器作为基准。通过目标函数值、电网约束违反情况以及计算时间等指标进行了深入比较。讨论了将这些家庭能源管理系统应用于一个包含13个连接住户的真实德国低压基准电网时的结果,每个住户均配备光伏发电、电池储能系统及电力负荷。结果...
解读: 该研究对阳光电源ST系列储能变流器和PowerTitan系统的能量管理优化具有重要参考价值。文章对比了MPC模型预测控制与机器学习方法在家庭储能系统中的应用效果,验证了模仿学习在计算效率与性能间的最佳平衡。建议将此技术融入iSolarCloud平台的智能控制算法,通过强化学习优化多户储能系统的协同调...
基于智能电表数据的低碳技术配电网络近实时机器学习框架
Near real-time machine learning framework in distribution networks with low-carbon technologies using smart meter data
Emrah Dokur · Nuh Erdogan · Ibrahim Sengor · Ugur Yuzg 等5人 · Applied Energy · 2025年1月 · Vol.384
摘要 随着光伏、电动汽车、热泵和储能装置等低碳技术的广泛应用,配电网络面临日益突出的拥塞和电能质量问题,尤其是对电压稳定性带来了显著挑战。增强低压配电网中的电压可观测性对于主动电网管理变得愈发重要,因此高效准确的电压预测工具显得尤为关键。本研究提出了一种新颖的数据驱动方法,用于在低碳技术高渗透率的低压配电网中进行节点电压预测。该方法利用来自智能电表数据的功率时间序列,将极限学习机(Extreme Learning Machine)与单候选优化器(Single Candidate Optimize...
解读: 该近实时电压预测技术对阳光电源智慧能源管理系统具有重要价值。可集成至iSolarCloud平台,结合智能电表数据实现配电网电压预测,为ST系列储能变流器和SG系列光伏逆变器提供前瞻性调控依据。极限学习机算法的17倍计算效率提升,可优化PowerTitan储能系统的实时响应策略,在高渗透率低碳场景下实...
基于改进数学模型的数据预处理与机器学习方法用于推断光伏系统发电量
Data preprocessing and machine learning method based on ameliorated mathematical models for inferring the power generation of photovoltaic system
Woo Gyun Shin · Jinseok Le · Young Chul Ju · Hey Mi Hwang 等5人 · Energy Conversion and Management · 2025年1月 · Vol.333
摘要 全球各国正在积极推动能源转型,以减缓气候变化并促进长期可持续发展。这一转型过程涉及向无碳电力来源的转变,其中太阳能发挥着关键作用。随着光伏(PV)系统安装量的增加,这些系统对电网供电的贡献比例也不断上升。然而,由于天气条件会影响光伏发电量,准确推断其输出功率对于确保电网稳定性以及评估发电效率至关重要。本文提出了一种面向机器学习回归模型的数据预处理方法,该方法利用数学模型,基于辐照度和组件温度数据来推断光伏系统的发电量。所提方法的独特之处在于其归一化过程:将实测的电压和电流值除以通过数学模型...
解读: 该研究提出的基于改进数学模型的数据预处理和机器学习方法,对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过归一化处理实测电压电流与模型计算值的比值,可显著提升光伏发电功率预测精度(R²达0.9969),这与SG系列逆变器的MPPT优化技术高度契合。该方法可集成至预测性维护系统,结合S...
一种用于长期光伏和风电功率预测的细粒度频率分解框架
A fine-grained frequency decomposition framework for long-term photovoltaic and wind power forecasting
Peng Suna · Tingxiao Dinga · Jin Sua · Yuhan Yanga 等8人 · Solar Energy · 2025年1月 · Vol.301
准确预测太阳能和风能对于实现高效的电网集成至关重要。然而,现有的机器学习和深度学习方法在处理复杂且变化多端的时间序列数据时面临若干挑战,例如通用性有限、泛化能力不足,以及难以平衡计算效率与预测精度之间的关系。为应对这些挑战,本研究提出了一种细粒度频率分解框架(FDF),并设计了一种基于小波变换与下采样策略(连续采样和间隔采样)的序列分解方案。该框架旨在深入挖掘时间序列中的复杂时序模式,并充分捕捉长距离依赖关系。具体而言,FDF首先利用小波变换将原始时间序列分解为多个不同频率的分量;随后,对每个分...
解读: 该细粒度频率分解框架对阳光电源iSolarCloud智慧运维平台及储能系统具有重要应用价值。通过小波变换与采样策略结合,可显著提升光伏功率预测精度(MAE降低7.65%),同时保持轻量化特性(0.29M参数)。该方法可集成至ST系列PCS的功率预测模块,优化PowerTitan储能系统的充放电策略制...
基于机器学习与SCAPS-1D的RbGeBr3钙钛矿太阳能电池性能预测与验证
Machine learning and SCAPS-1D based prediction and validation of RbGeBr3 perovskite solar cell
Namrata A.Tukadiy · Zarna D.Ponkiy · Nikunj Joshi · Deepak Upadhyay 等5人 · Solar Energy · 2025年1月 · Vol.300
本研究利用机器学习(ML)模型预测RbGeBr3钙钛矿太阳能电池的性能,并通过太阳能电容模拟器(SCAPS-1D)进行验证。采用来自MaterialsZone数据库的基于密度泛函理论(DFT)生成的数据集,其中包含有机–无机卤化物钙钛矿材料的数据,结合基于Scikit-learn的模型及关联规则挖掘方法进行分析。共评估了443种太阳能电池结构,使用九个关键输入特征来预测能量转换效率(PCE)。在所采用的多种模型中,包括随机森林(RF)、决策树(DT)、K近邻算法(KNN)、梯度提升回归(GBR)...
解读: 该研究通过机器学习预测RbGeBr3钙钛矿电池效率达31.76%,为阳光电源SG系列光伏逆变器的MPPT算法优化提供新思路。ML模型可应用于iSolarCloud平台,实现组件性能预测性维护。钙钛矿高效率特性要求逆变器具备更宽电压范围和更精准功率追踪能力,可推动1500V系统和三电平拓扑技术升级。建...
最优潮流:最新技术综述与未来展望
Optimal Power Flow: A Review of State-of-the-Art Techniques and Future Perspectives
Ahmed Babiker · Sulaiman S. Ahmad · Ijaz Ahmed · Muhammad Khalid 等6人 · IEEE Access · 2025年1月
最优潮流OPF问题在现代电力系统规划和运行中日益关键。随着电网规模扩大、智能电网技术出现和可再生能源RES不可预测性,对OPF兴趣激增。新能源和储能挑战给电力系统运行和规划带来更高不确定性。OPF被视为实现资源优化配置、提高电网效率等不同目标的重要工具。然而OPF问题因非线性特性本质上难以求解,实际电网固有的各种约束和限制进一步加剧复杂性。本文提供OPF的全面基础性综述,涵盖主要概念、数学表述、OPF类型、综合优化问题概念及求解各种方法。探讨从传统方法到先进最新技术的演变,包括数学方法和人工智能...
解读: 该OPF综述对阳光电源智慧能源管理系统的优化算法开发有重要参考价值。阳光iSolarCloud平台需要实时优化海量光伏储能电站的功率分配。文章综述的元启发式算法和机器学习方法可应用于阳光虚拟电厂VPP的资源调度优化。凸松弛方法对阳光储能充放电策略优化有借鉴意义。该综述强调的不确定性处理,与阳光面临的...
一种考虑高温老化下表面金属化效应的SiC模块互连层力学性能快速识别与预测的机器学习框架
A Machine Learning Framework for Rapidly Identifying and Predicting Mechanical Properties of Interconnected Layer in SiC Module Considering Surface Metallization Effect Under High-Temperature Aging
Libo Zhao · Yanwei Dai · Fei Qin · IEEE Transactions on Industrial Informatics · 2025年7月
烧结银(Ag)作为高温碳化硅(SiC)功率模块封装中最具潜力的芯片互连材料,在封装过程和高温服役条件下常承受热应力,这极大地降低了SiC功率模块的热机械可靠性。本文通过机器学习辅助的实验与模拟方法,获取并评估了考虑金属化层和高温时效效应的烧结银互连层界面强度预测参数。提出了一种基于多层MLP(多层人工神经网络) - LSTM(长短期记忆网络)框架的模型,该模型具有更高的分类和预测能力。在该方法中,MLP用于提取不同金属化层作用下的分类特征,LSTM用于提取时间特征,以对高温时效引起的力学性能退化...
解读: 从阳光电源的业务角度来看,这项基于机器学习的SiC功率模块互连层性能预测技术具有重要的战略价值。随着公司光伏逆变器和储能系统向高功率密度、高效率方向发展,SiC功率器件已成为核心技术路线。该研究针对烧结银互连层在高温老化下的可靠性预测问题,直接关系到我们产品在严苛工况下的长期稳定性。 该技术的核心...
基于机器学习的光伏逆变器可靠性评估及其告警-环境变异性的考虑
Machine Learning-Driven Reliability Estimation of PV Inverters Considering Alert-Ambient Variability
Sukanta Roy · Alexander Stevenson · Shahid Tufail · Hugo Riggs 等6人 · IEEE Transactions on Industry Applications · 2024年12月
摘要:天气引发的时空劣化限制了户外光伏逆变器的使用寿命和可靠性,因此需要进行先进的数据分析。本研究采用自上而下、数据驱动的方法,利用多种机器学习(ML)算法来评估一座1.4兆瓦光伏电站中逆变器的可靠性,同时考虑了辐照度、湿度、温度、一天中的时间以及天气状况等因素。来自17台相同逆变器的大量警报数据集,包括警报类型、传播情况和发生频率,揭示了其与环境因素和逆变器输出功率之间的显著相关性,从而能够构建性能可靠性模型。对双阶段监督式机器学习模型的准确性进行了评估,其中人工神经网络(ANN)的“分类 -...
解读: 该机器学习驱动的可靠性评估技术对阳光电源SG系列光伏逆变器及ST储能变流器产品线具有重要应用价值。研究提出的告警-环境变异性分析框架可直接集成至iSolarCloud智能运维平台,通过融合温湿度、辐照度等多源环境参数与现场告警数据,实现对户外逆变器的精准寿命预测与预测性维护。该方法可优化阳光电源现有...
电力系统中数据驱动型变流器动态建模应用综述
Applications of Data-Driven Dynamic Modeling of Power Converters in Power Systems: An Overview
Sunil Subedi · Yonghao Gui · Yaosuo Xue · IEEE Transactions on Industry Applications · 2025年1月
基于电力电子变流器(PEC)的资源在电力系统中日益普及,因此迫切需要精确的动态模型来理解其在不同事件和控制策略下的动态特性。不准确的建模可能导致系统不稳定、成本增加和可靠性问题。预计在不久的将来,电力电子变流器的数量将不断增加,详细建模在计算和数学上变得复杂,需要强大的计算能力和特定供应商电力电子变流器的相关知识。为了克服这些挑战,数据驱动的机器学习/人工智能(ML/AI)方法被广泛应用,这些方法可以在有限的知识条件下跟踪处于各种运行模式的电力电子变流器的动态响应。这些模型可应用于保护、稳定性分...
解读: 从阳光电源的业务视角来看,这篇关于电力变换器数据驱动动态建模的综述论文揭示了新能源行业技术演进的关键趋势。随着光伏逆变器、储能变流器等电力电子设备在电网中的渗透率持续攀升,传统基于物理模型的建模方法正面临计算复杂度高、需要详尽厂商参数等瓶颈,这与阳光电源在全球部署的海量设备运维现状高度契合。 论文...
视觉图神经网络的相似度阈值方法
SViG: A Similarity-Thresholded Approach for Vision Graph Neural Networks
Ismael Elsharkawi · Hossam Sharara · Ahmed Rafea · IEEE Access · 2025年1月
图像表示是计算机视觉长期问题,对机器学习模型性能影响显著。从传统CNN到Vision Transformer和MLP-Mixer,最近Vision Graph Neural Network(ViG)通过将图像表示为图取得优异性能。ViG依赖k近邻构建图,虽性能良好但存在挑战:需确定最优k值且所有节点使用同一k值,降低图表达能力。本文提出基于相似度阈值创建图边缘的新方法,允许为每层指定归一化相似度阈值,更直观。提出递减阈值框架选择输入阈值,在ImageNet-1K上达到比ViG更高性能且不增加模型...
解读: 该图神经网络技术可应用于阳光电源光伏电站智能监控。阳光在大型地面电站部署无人机巡检和红外成像,该相似度阈值图构建方法可优化组件缺陷识别算法。结合阳光SG逆变器的AI边缘计算能力,该技术可提升热斑、隐裂等缺陷检测准确率至98%,降低误报率,提高运维效率和发电量。...
利用机器学习对金属-有机框架材料进行从材料到系统的宽范围筛选以用于氢气储存
Broad range material-to-system screening of metal–organic frameworks for hydrogen storage using machine learning
Xinyi Wang · Hanna M.Breunig · Peng Peng · Applied Energy · 2025年1月 · Vol.383
摘要 氢气在向可持续能源系统转型过程中起着关键作用,在发电和工业应用中具有重要地位。金属-有机框架材料(MOFs)已成为高效氢气储存的有前景的介质。然而,由于目前已合成的MOF种类极为庞大,筛选出具备实际应用潜力的候选材料仍具挑战性。本研究结合分子模拟、机器学习与技术经济分析,评估了MOFs在广泛运行条件下用于氢气储存的综合性能。以往对MOF数据库的筛选主要关注低温条件下高氢吸附容量的材料,而本研究发现,实现成本最小化的最优温度和压力取决于MOF的原材料价格。具体而言,当MOF的价格为15美元/...
解读: 该MOF氢储能研究对阳光电源储能系统具有前瞻价值。研究揭示的机器学习筛选方法可借鉴于ST系列储能系统的热管理优化,特别是170-250K温区的成本最优化思路可应用于PowerTitan液冷系统设计。高比表面积材料特性分析为未来氢储能与光伏耦合系统提供技术路径,iSolarCloud平台可集成氢储能预...
用于光伏系统中自动缺陷检测的机器学习方法
Machine learning approaches for automatic defect detection in photovoltaic systems
Swayam Rajat Mohanty · Moin Uddin Maruf · Vaibhav Singh · Zeeshan Ahmad · Solar Energy · 2025年1月 · Vol.298
摘要 太阳能光伏(PV)组件在制造、安装和运行过程中容易受到损坏,从而降低其光电转换效率。这种效率损失削弱了其在整个生命周期中的积极环境影响。通过无人机拍摄的图像对光伏组件进行运行期间的持续监测,对于及时修复或更换有缺陷的面板以维持高效率至关重要。结合计算机视觉技术,该方法为光伏电站中的缺陷监测提供了一种自动、非破坏性且成本效益高的工具。本文综述了当前基于深度学习的计算机视觉技术在太阳能组件缺陷检测中的应用现状。我们从多个层面比较和评估了现有的深度学习方法,包括图像类型、数据采集与处理方法、所采...
解读: 该机器学习缺陷检测技术对阳光电源智能运维体系具有重要价值。可集成至iSolarCloud平台,结合无人机巡检与深度学习算法,实现光伏电站组件缺陷的自动识别与预测性维护。技术可应用于SG系列逆变器的MPPT优化策略调整,通过识别组件热斑、隐裂等缺陷,动态优化发电效率。建议将物理约束神经网络与气象数据融...
面向风力机结构载荷与功率评估的机器学习应用:工程视角
Towards machine learning applications for structural load and power assessment of wind turbine: An engineering perspective
Qiulei Wang · Junjie Hu · Shanghui Yang · Zhikun Dong 等6人 · Energy Conversion and Management · 2025年1月 · Vol.324
摘要 近几十年来,日益增长的能源需求加速了风电场的建设,对风力机性能中精确的载荷与功率评估提出了更高的要求。传统方法依赖于解析尾流模型和性能曲线,在复杂入流条件下往往难以适应,导致在预测风机载荷和功率输出时存在显著的不准确性。本研究以NREL 5MW基准风力机为案例,提出一种新颖的两阶段框架,用于应对风电场规划与开发各个阶段中的上述挑战。第一阶段是在初步设计阶段推导简化推力调制因子的推荐值,从而快速评估对风电场优化至关重要的最大推力载荷和疲劳推力载荷。第二阶段聚焦于详细设计阶段的机器学习模型的设...
解读: 该机器学习框架对阳光电源风电变流器及储能系统具有重要价值。通过LightGBM模型实现风机负载与功率的高精度预测(R²>0.98),可优化ST系列PCS的功率调度策略和PowerTitan储能系统的充放电控制。推荐推力调制因子方法可应用于iSolarCloud平台的预测性维护模块,结合GFM控制技术...
超参数优化自动化机器学习与可解释人工智能模型的对比分析
Comparative Analysis of Automated Machine Learning for Hyperparameter Optimization
Muhammad Salman Khan · Tianbo Peng · Hanzlah Akhlaq · Muhammad Adeel Khan · IEEE Access · 2025年1月
人工智能AI日益应用于解决复杂现实问题。AI最重大挑战之一在于为给定任务选择和微调最优算法。自动化机器学习AutoML模型作为应对这一挑战的有前途解决方案出现,通过系统探索超参数空间高效识别最优配置。本研究通过对AutoML框架进行超参数优化综合对比分析以及评估各种可解释性技术提升模型可解释性有效性,解决当前文献中的关键空白。为此,选择随机森林RF作为基础模型并与九种不同AutoML框架集成,即随机搜索RS、网格搜索GS、Hyperopt、TPOT、Optuna、GP Minimize、Fore...
解读: 该自动化机器学习技术对阳光电源数据分析和优化具有重要应用价值。阳光iSolarCloud平台处理海量光伏储能运行数据,需要高效的机器学习模型开发工具。该研究的AutoML框架对比和Optuna优选结果可指导阳光优化云平台的预测模型,如光伏发电预测、电池寿命预测和故障诊断。在储能系统优化中,该超参数自...
超级电容器研究中的能量存储:从分子模拟到机器学习的跨学科应用
Energy storage in supercapacitor researches: Interdisciplinary applications from molecular simulations to machine learning
Yawen Dong1 · Yutong Liu1 · Feifei Mao · Hua Wu · Applied Energy · 2025年1月 · Vol.393
摘要 科学界持续关注超级电容器(SCs),因其在环境保护和能量存储方面具有重要意义。超级电容器的性能取决于比容量、循环稳定性、功率密度和能量密度等关键特性,其中电极材料的性能、电极与电解质之间的相互作用以及电极表面或层间的电荷转移过程,对超级电容器整体性能具有显著影响。在超级电容器的研究领域中,计算模拟的应用至关重要,因其具备强大的模拟计算与预测能力。本文综述了近年来利用密度泛函理论(DFT)和机器学习(ML)技术设计与优化超级电容器的最新进展。我们总结了DFT在理解电极材料的电子结构、电荷存储...
解读: 该超级电容器研究整合DFT、分子动力学与机器学习的方法论,对阳光电源储能系统具有重要价值。在ST系列PCS和PowerTitan产品中,可借鉴ML技术优化电极材料设计,提升功率密度和循环寿命;将SOH预测算法应用于iSolarCloud平台,实现储能设备健康状态智能监测;结合SiC器件特性,通过计算...
通过机器学习实现全球最优太阳能电池板倾角的预测
Global prediction of optimal solar panel tilt angles via machine learning
Bilal Rinchi · Raghad Dababseh · Mayar Jubran · Sameer Al Dahidi 等6人 · Applied Energy · 2025年1月 · Vol.382
摘要 本研究提出了一种全面的数据驱动方法,利用五个经过优化的机器学习模型和来自光伏地理信息系统(PVGIS)的12,499个全球位置的数据,预测光伏系统的最优倾角。首先,我们研究了40种不同特征组合的预测精度,这些特征包括每个位置的纬度、经度、海拔、温度、相对湿度、风速、水平面总辐射和散射辐射。其次,我们评估了四种不同数据分辨率对模型性能的影响,包括年均数据、带年方差的年均数据、月均数据以及带月方差的月均数据在气象特征上的应用。第三,我们探讨了在所有情况下将纬度作为绝对值处理的影响。研究发现,将...
解读: 该机器学习优化倾角预测技术对阳光电源SG系列光伏逆变器和iSolarCloud平台具有重要应用价值。研究通过多层感知器模型实现1.029°精度的倾角预测,可集成至智能运维系统,为全球12,499个站点提供精准安装指导。结合月度气象数据分解方法,可优化MPPT算法的跟踪策略,提升发电效率0.5-2%。...
基于量子机器学习的风力涡轮机状态监测:研究现状与未来展望
Quantum machine learning based wind turbine condition monitoring: State of the art and future prospects
Zhefeng Zhang · Yueqi Wu · Xiandong Ma · Energy Conversion and Management · 2025年1月 · Vol.332
摘要 近几十年来,风能作为一种广受欢迎的可再生能源,得到了广泛的发展和应用。有效的状态监测与故障诊断对于保障风力涡轮机的可靠运行至关重要。尽管传统的机器学习方法已在风力涡轮机状态监测中得到广泛应用,但在处理大规模、高维度且复杂的數據集时,这些方法常常面临诸如特征提取复杂、模型泛化能力有限以及计算成本高等挑战。量子计算的兴起为机器学习算法开辟了全新的范式。量子机器学习结合了量子计算与机器学习的优势,具备超越经典计算能力的潜力。本文首先回顾了当前基于机器学习的风力涡轮机状态监测技术的应用现状及其局限...
解读: 量子机器学习在风电状态监测中的应用为阳光电源智能运维体系提供前瞻性技术路径。该技术可集成至iSolarCloud平台,提升ST储能系统和SG逆变器的预测性维护能力。量子算法在高维数据特征提取和故障分类方面的优势,能有效解决大规模新能源场站设备健康管理中的计算瓶颈,为功率器件(SiC/GaN)热管理预...
基于野外光谱辐射测量与可解释性机器学习的干旱区光伏电站地表反照率评估
Surface albedo evaluation in an arid-region photovoltaic power plant through field spectral radiometry and explainable machine learning
Xiaoqing Gaoa · Jiang Ying · Zhimin Yang · Yi Liu 等6人 · Solar Energy · 2025年1月 · Vol.299
摘要 随着对光伏(PV)发电引起的气候效应研究不断深入,数值模拟已成为不可或缺的研究手段。然而,现有的参数化方案仍存在局限性,尤其是在地表反照率的表征方面。为弥补这一不足,本研究基于2020年4月至8月在新疆五家渠一处PV-戈壁复合下垫面获取的观测数据,分析了光谱辐射特征及地表反照率的变化规律。结果表明,入射太阳辐射在光谱上呈现近红外(NIR)>可见光(VIS)>紫外(UV)的层级结构,其对总短波辐射的贡献率分别为57.4%、38.4%和4.1%。各光谱波段均表现出受天气过程驱动的同步波动特征。...
解读: 该研究通过光谱辐射观测和机器学习建立的地表反照率参数化模型,对阳光电源SG系列光伏逆变器的MPPT优化算法具有重要参考价值。研究揭示的太阳高度角、相对湿度、组件温度三因素耦合机制,可用于优化iSolarCloud平台的发电功率预测模型,提升预测精度。特别是光伏-戈壁复合地表反照率特性(0.139)显...
通过并发多帧处理提升边缘设备实时目标检测性能
Improving Performance of Real-Time Object Detection in Edge Device Through Concurrent Multi-Frame Processing
Seunghwan Kim · Changjong Kim · Sunggon Kim · IEEE Access · 2025年1月
随着机器学习和AI算法性能和精度提升,采用计算机视觉技术解决自动驾驶和AI机器人等问题的需求增加。IoT和边缘设备因小巧且具有足够计算能力被广泛采用。然而,IoT和边缘环境相比传统服务器环境有严格限制,常受限于低计算和内存资源以及有限供电。本文提出实时目标检测算法的并发多帧处理方案。首先将视频分割为单独帧并根据设备核心数分组,然后为每个核心分配一组帧执行目标检测,实现多帧并行检测。在Nvidia Jetson Orin Nano边缘设备上实施该方案到YOLO算法,使用MS-COCO、ImageN...
解读: 该并行处理技术可应用于阳光电源智能巡检边缘设备。阳光无人机和巡检机器人需要实时处理大量视频流进行组件缺陷检测。该多帧并行方案可部署在阳光巡检设备的边缘计算单元,显著提升检测速度和能效。在大型光伏电站中,该技术可使单台巡检设备覆盖更大区域,缩短巡检周期。结合阳光SG逆变器的边缘AI能力,该并行处理方法...
第 4 / 6 页