← 返回
基于智能电表数据的低碳技术配电网络近实时机器学习框架
Near real-time machine learning framework in distribution networks with low-carbon technologies using smart meter data
| 作者 | Emrah Dokur · Nuh Erdogan · Ibrahim Sengor · Ugur Yuzg · Barry P. Hayes |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 384 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel data-driven model optimizes voltage forecasting in LV networks with LCTs. |
语言:
中文摘要
摘要 随着光伏、电动汽车、热泵和储能装置等低碳技术的广泛应用,配电网络面临日益突出的拥塞和电能质量问题,尤其是对电压稳定性带来了显著挑战。增强低压配电网中的电压可观测性对于主动电网管理变得愈发重要,因此高效准确的电压预测工具显得尤为关键。本研究提出了一种新颖的数据驱动方法,用于在低碳技术高渗透率的低压配电网中进行节点电压预测。该方法利用来自智能电表数据的功率时间序列,将极限学习机(Extreme Learning Machine)与单候选优化器(Single Candidate Optimizer)相结合,以提升计算效率和预测精度。所提出的模型通过两个不同低压配电网的实际智能电表数据集进行了验证,并与多种成熟的机器学习模型进行了对比。结果表明,所采用的优化算法显著改善了模型参数的调优过程,相较于实现的最快元启发式方法,计算时间最多减少了17倍。所提模型表现出更优的预测准确性,平均电压偏差仅为0.56%。尽管当前每节点的计算耗时尚不能完全满足实时应用需求,但本研究表明该优化方法显著提升了电压预测工具的整体性能。
English Abstract
Abstract The widespread adoption of low-carbon technologies, such as photovoltaics, electric vehicles, heat pumps, and energy storage units introduces challenges to distribution network congestion and power quality, particularly raising concerns about voltage stability. Enhanced voltage visibility in low-voltage networks is increasingly vital for active grid management, making efficient voltage forecasting tools essential. This study introduces a novel data-driven approach for forecasting node voltages in low-voltage networks with high penetration of low-carbon technologies. Using time series of power measurements from smart meter data, the study integrates an Extreme Learning Machine with the Single Candidate Optimizer to enhance computational efficiency and forecasting accuracy. The model is validated using smart meter datasets from two different low-voltage networks with low-carbon technologies and is compared with several established machine learning models. The results demonstrate that the optimization algorithm significantly improves the tuning of model parameters, achieving up to a 17-fold reduction in computation time compared to the fastest metaheuristic methods implemented. The proposed model demonstrated superior accuracy, with an average voltage deviation of 0.56%. Although the computation time per node achieved is not yet suitable for real time applications, the study shows that the optimization method significantly improves the performance of the forecasting tool.
S
SunView 深度解读
该近实时电压预测技术对阳光电源智慧能源管理系统具有重要价值。可集成至iSolarCloud平台,结合智能电表数据实现配电网电压预测,为ST系列储能变流器和SG系列光伏逆变器提供前瞻性调控依据。极限学习机算法的17倍计算效率提升,可优化PowerTitan储能系统的实时响应策略,在高渗透率低碳场景下实现电压稳定性主动管理,提升充电桩等分布式设备的协同控制能力,支撑虚拟同步发电机(VSG)技术的预测性调度。