← 返回
储能系统技术 储能系统 机器学习 ★ 5.0

机器学习预测三重管相变材料蓄热系统熔化响应时间的潜力

The potential of machine learning to predict melting response time of phase change materials in triplex-tube latent thermal energy storage systems

作者 Peiliang Yan · Chuang Wen · Hongbing Ding · Xuehui Wang · Yan Yang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 390 卷
技术分类 储能系统技术
技术标签 储能系统 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Y-shaped fins to enhance phase change material charging performance in latent thermal energy storage systems.
语言:

中文摘要

准确预测熔化响应时间对于优化热能储存系统至关重要,这类系统在解决建筑环境中热能供需之间的时间不匹配问题中发挥着关键作用。本研究旨在定量预测一种新型三重管热能储存系统的熔化响应时间,该系统结合了相变材料和Y形翅片以增强传热性能。基于焓-孔隙度方法建立了数值模型来模拟熔化过程,在不同的设计和运行条件下共生成60个案例的数据集,其熔化响应时间范围为15至45分钟。研究的关键参数包括翅片角度(10°–30°)、翅片宽度(5–15 mm)以及传热流体温度(60 °C–80 °C)。在模型构建之前,验证了变量的独立性以确保预测结果的稳健性。采用了四种机器学习算法——多项式回归、支持向量回归、随机森林回归和极端梯度提升(XGBoost),并通过贝叶斯方法进行超参数优化。XGBoost模型表现出最优的预测能力,预测精度达到92%。特征重要性分析表明,翅片宽度和传热流体温度是主导因素,分别对预测方差的贡献率为51%和47%,而翅片角度的影响较小,仅为2%。本研究展示了机器学习技术在热能储存系统设计与优化中的新颖应用,为提升其熔化性能和运行效率提供了有价值的见解。

English Abstract

Abstract Accurate prediction of the melting response time is vital for optimizing thermal energy storage systems, which play a key role in addressing the temporal mismatch between thermal energy demand and supply in the built environment. This study aims to quantitatively predict the melting response time of a novel triplex-tube thermal energy storage system incorporating phase change materials and Y-shaped fins to enhance heat transfer. A numerical model based on the enthalpy-porosity method was developed to simulate the melting process, resulting in a dataset comprising 60 cases with melting response times ranging from 15 to 45 min under varying design and operational conditions. The key parameters investigated include fin angle (10°–30°), fin width (5–15 mm), and heat transfer fluid temperature (60 °C–80 °C). Prior to model development, variable independence was validated to ensure robust predictions. Four machine learning algorithms—polynomial regression, support vector regression, random forest regression, and extreme gradient boosting (XGBoost)—were employed, with hyperparameter optimization performed using a Bayesian approach. The XGBoost model demonstrated superior predictive capability, achieving an accuracy of 92 %. Feature importance analysis revealed that fin width and heat transfer fluid temperature were the dominant factors, contributing 51 % and 47 % to the prediction variance, respectively, whereas fin angle had a marginal influence of 2 %. This work provides a novel application of machine learning techniques to the design and optimization of thermal energy storage systems, offering valuable insights into improving their melting performance and operational efficiency.
S

SunView 深度解读

该相变储能系统的机器学习优化技术对阳光电源ST系列储能变流器和PowerTitan液冷储能系统具有重要借鉴价值。研究中XGBoost算法对热响应时间的92%预测精度,可应用于我司液冷储能系统的热管理优化,特别是三电平拓扑功率器件的散热预测。传热流体温度和翅片宽度作为主导因素的发现,可指导PowerTitan系统的液冷管路设计和散热结构优化,提升储能系统在高功率充放电工况下的热稳定性和循环寿命,并为iSolarCloud平台增加热管理预测性维护功能提供算法支持。