← 返回
融合人工智能与基于物理的建模用于极端高温事件下的长期级联水电调度
Integrated Artificial Intelligence and Physics-Based Modeling for Long-Term Cascaded Hydropower Scheduling under Extreme Heat Events
| 作者 | Maryam Baghkarvasef · Masood Parvania |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年6月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 极端热浪事件 水电调度 物理蒸发模型 M - LSTM预测模型 水电生产函数 |
语言:
中文摘要
极端热浪事件对水电站运行构成严峻挑战。本文结合人工智能与基于物理的模型,提出一种高效的长期调度框架,旨在极端高温期间最大化水力发电量。所提出的模型生成的水价值可用于指导短期调度策略制定。构建了考虑陆-气相互作用的物理蒸发模型(PEM),以刻画极端高温下水库蒸发量的变化,并采用多变量长短期记忆(M-LSTM)模型预测PEM及调度所需的关键输入参数。通过回归型机器学习算法拟合水电出力函数,实现了非线性、非凸特性的线性化集成。案例研究涵盖哥伦比亚河上11个级联水电站,结果表明该模型能有效优化水库调度,缓解极端高温对发电能力与运营收益的不利影响。
English Abstract
The operation of hydropower plants are significantly challenged by extreme heatwave events. This paper integrates artificial intelligence and a physics-based model to introduce an efficient long-term scheduling framework aimed at maximizing hydropower generation during extreme heat events. The water values derived from the proposed long-term scheduling model can be used in developing effective strategies for short-term hydropower scheduling. A physics-based evaporation model (PEM), which captures key land-atmosphere interactions, is developed to account for significant variations in reservoir evaporation rates during extreme heat events. A multivariate long short-term memory (M-LSTM) forecasting model is also utilized to predict the key input parameters required for both the PEM and the long-term scheduling problem. A regression-based machine learning algorithm is also utilized to estimate the hydropower production function, which enables linear integration of the nonlinear and nonconvex behavior of hydropower plant in the mixed-integer linear formulation of the scheduling problem. The proposed model is applied to a case study of eleven cascaded hydropower units located on the Columbia river. The numerical results demonstrate that the proposed long-term scheduling model effectively manages reservoir operations, mitigating the adverse impacts of extreme heat events on hydropower generation and operator profitability.
S
SunView 深度解读
该研究的AI-物理混合建模方法对阳光电源PowerTitan储能系统与水光互补项目具有重要应用价值。其M-LSTM多变量预测模型可移植至iSolarCloud平台,用于极端气候下的储能系统热管理与功率预测,优化ST系列储能变流器的散热策略与功率调度。物理蒸发模型的陆-气耦合思路可启发储能电站的热力学建模,结合机器学习实现非线性温升特性的线性化处理,提升SiC器件在高温环境下的可靠性。长期调度框架中的水价值函数概念可借鉴至储能系统的电价值评估,指导多时间尺度的充放电策略,增强极端天气下电网支撑能力与经济效益。