← 返回
储能系统技术 储能系统 SiC器件 机器学习 ★ 5.0

最优潮流:最新技术综述与未来展望

Optimal Power Flow: A Review of State-of-the-Art Techniques and Future Perspectives

作者 Ahmed Babiker · Sulaiman S. Ahmad · Ijaz Ahmed · Muhammad Khalid · Mohammad A. Abido · Fahad Saleh Al-Ismail
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 SiC器件 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 最优潮流问题 电力系统 可再生能源 求解方法 研究展望
语言:

中文摘要

最优潮流OPF问题在现代电力系统规划和运行中日益关键。随着电网规模扩大、智能电网技术出现和可再生能源RES不可预测性,对OPF兴趣激增。新能源和储能挑战给电力系统运行和规划带来更高不确定性。OPF被视为实现资源优化配置、提高电网效率等不同目标的重要工具。然而OPF问题因非线性特性本质上难以求解,实际电网固有的各种约束和限制进一步加剧复杂性。本文提供OPF的全面基础性综述,涵盖主要概念、数学表述、OPF类型、综合优化问题概念及求解各种方法。探讨从传统方法到先进最新技术的演变,包括数学方法和人工智能方法如元启发式算法和机器学习算法,深入讨论各类凸松弛方法,最终突出未来研究的关键空白、挑战和机遇。

English Abstract

The Optimal Power Flow (OPF) problem has become increasingly pivotal in the planning and operation of modern power systems. With the expansion of the grid scale, the advent of smart grid technologies, and the unpredictable nature of renewable energy sources (RESs), interest in OPF has surged. These challenges with new energy storage have introduced a heightened level of uncertainty into the power system’s operation as well as planning. Because of this, OPF is seen as an important tool for achieving different goals, such as optimizing the distribution of resources, making electrical networks more efficient, and so on. However, the OPF problem is inherently difficult to solve because of its non-linear characteristics. Different constraints and limitations intrinsic to real power system grids further accentuate this complexity. Moreover, modern power systems have incorporated new constraints, which make the OPF problem more complex in terms of mathematical formulation and solution. This paper offers a comprehensive and foundational review of OPF, covering the main concept, mathematical formulation, OPF types, comprehensive OPF optimization problem concepts, and the various methods developed to solve it. Additionally, it explores the evolution of these methods from conventional approaches to advanced and recent techniques, including mathematical methods and artificial intelligence methods, which include metaheuristic (search-based) and machine learning algorithms (data-driven). The paper also discusses various types of convex relaxation methods in depth. Ultimately, the paper highlights key gaps, challenges, and opportunities for future research.
S

SunView 深度解读

该OPF综述对阳光电源智慧能源管理系统的优化算法开发有重要参考价值。阳光iSolarCloud平台需要实时优化海量光伏储能电站的功率分配。文章综述的元启发式算法和机器学习方法可应用于阳光虚拟电厂VPP的资源调度优化。凸松弛方法对阳光储能充放电策略优化有借鉴意义。该综述强调的不确定性处理,与阳光面临的新能源波动性挑战一致。OPF理论可支撑阳光开发更先进的多目标优化功能,提升新能源消纳和电网友好性。