← 返回
基于机器学习与计算流体动力学的核电厂热能储存集成动态评估与优化
Dynamic Assessment and Optimization of Thermal Energy Storage Integration with Nuclear Power Plants Using Machine Learning and Computational Fluid Dynamics
| 作者 | Muhammad Faizan · Imran Afgan |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 391 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Latent heat storage systems for nuclear power plants are comprehensively studied. |
语言:
中文摘要
摘要 本研究利用相变材料(PCM)将热能储存(TES)系统与核电厂(NPPs)进行集成,采用计算流体动力学(CFD)模拟与机器学习技术,以提升核电厂的整体效率与盈利能力。本研究的创新性不仅在于分析PCM热物理特性、设计参数及输入条件对系统性能的影响,更在于开发一种可有效集成于核电厂的TES系统,解决包括输入参数的动态评估以及响应实时需求波动时对可用过剩能量的利用等关键挑战。为开展分析,共执行了2500组CFD模拟,用于评估垂直环形通道内相变行为。系统地分析了诸如传热流体注入条件和多种PCM特性等关键设计因素。基于数值模拟生成的大规模数据集,采用人工神经网络(ANN)和多目标遗传算法(MOGA)对TES系统进行优化,重点在于最小化注入速度、缩短充电时间并最大化储能容量。数值模型与机器学习模型还在不同条件下通过实验数据进行了明确验证。研究结果表明,设计参数对TES系统的性能具有显著影响,ANN模型能够有效预测PCM的熔化时间与储能能力。本研究提出了一套完整的、专为核电厂设计的优化热能储存集成策略框架,为提高非高峰时段的能量储存及过剩能量的利用提供了可扩展且高效的解决方案。
English Abstract
Abstract This study integrates thermal energy storage (TES) systems with nuclear power plants (NPPs) utilizing phase change materials (PCMs). It employs computational fluid dynamics (CFD) simulations and machine learning techniques to improve the overall efficiency and profitability of NPPs. The novelty of this research extends beyond merely analyzing the influence of PCM thermophysical properties, design parameters, and input conditions on system performance. The objective is to develop a TES system that can be effectively integrated with NPPs by addressing critical challenges, including the dynamic assessment of input parameters and the utilization of available excess energy in response to real-time demand fluctuations. For the analysis, 2,500 CFD simulations were performed to assess the phase change behavior within a vertical annular channel. Key design factors, such as heat transfer fluid injection conditions and various PCM properties, were systematically analyzed. The extensive dataset from numerical simulations was utilized to employ an artificial neural network (ANN) and a multi-objective genetic algorithm (MOGA) for optimizing the TES system, with an emphasis on minimizing injection velocity, reducing charging duration, and maximizing stored energy. The numerical and machine learning models were also explicitly evaluated against experimental data under different conditions. The findings indicate that design parameters have a substantial effect on the performance of the TES system, with the ANN model effectively predicting PCM melting time and energy storage capacity. This study presents a complete framework for an optimized thermal energy storage integration strategy specifically designed for NPPS, offering a scalable and efficient method for improving energy storage and utilization of excess energy during off-peak hours.
S
SunView 深度解读
该研究的CFD仿真与机器学习优化方法对阳光电源ST系列储能系统具有重要借鉴价值。核心启示包括:1)动态评估技术可应用于PowerTitan储能系统的实时需求响应优化,提升削峰填谷效率;2)多目标遗传算法(MOGA)可用于优化PCS充放电策略,平衡充电时长与能量密度;3)ANN预测模型可集成至iSolarCloud平台,实现储能容量衰减预测性维护;4)相变材料热管理思路可借鉴于大型集装箱式ESS的温控系统设计。建议将该框架应用于工商业储能场景的多能互补优化,特别是配合SG逆变器构建源网荷储一体化解决方案。