← 返回
基于参数优化的AC感知直流最优输电切换问题
AC-Informed DC Optimal Transmission Switching Problems via Parameter Optimization
| 作者 | Babak Taheri · Daniel K. Molzahn |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年6月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 最优输电开关 直流潮流近似 机器学习模型 优化参数 开关决策 |
语言:
中文摘要
最优输电切换(OTS)问题通过联合优化线路通断状态与发电机出力以降低运行成本。结合交流潮流模型的非线性与线路状态的离散变量,使得AC-OTS成为计算困难的混合整数非线性规划问题。为应对该挑战,常采用直流潮流近似将其转化为混合整数线性规划(DC-OTS),但其在交流模型下常导致次优或不可行解。本文提出一种增强型DC-OTS模型,通过优化直流潮流参数,使其有功潮流逼近交流最优潮流中的视在功率分布,从而更准确刻画线路阻塞特性。数值结果表明,所提方法显著提升切换决策精度,在交流模型下评估时最高可降低44%的运行成本。
English Abstract
Optimal Transmission Switching (OTS) problems minimize operational costs while treating both the transmission line energization statuses and generator setpoints as decision variables. The combination of nonlinearities from an AC power flow model and discrete variables associated with line statuses makes AC-OTS a computationally challenging Mixed-Integer Nonlinear Program (MINLP). To address these challenges, the DC power flow approximation is often used to obtain a DCOTS formulation expressed as a Mixed-Integer Linear Program (MILP). However, this approximation often leads to suboptimal or infeasible switching decisions when evaluated with an AC power flow model. This paper proposes an enhanced DC-OTS formulation that leverages techniques for training machine learning models to optimize the DC power flow model's parameters. By optimally selecting parameter values that align flows in the DC power flow model with apparent power flows—incorporating both real and reactive components—from AC Optimal Power Flow (OPF) solutions, our method more accurately captures line congestion behavior. Integrating these optimized parameters into the DC-OTS formulation significantly improves the accuracy of switching decisions and reduces discrepancies between DC-OTS and AC-OTS solutions. We compare our optimized DC-OTS model against traditional OTS approaches, including DC-OTS, Linear Programming AC (LPAC)-OTS, and Quadratic Convex (QC)-OTS. Numerical results show that switching decisions from our model yield better performance when evaluated using an AC power flow model, with up to 44% cost reductions in some cases.
S
SunView 深度解读
该AC感知DC-OTS优化技术对阳光电源PowerTitan大型储能系统及iSolarCloud智能运维平台具有重要应用价值。在电网侧储能场景中,该方法可优化储能系统参与电网拓扑重构时的充放电策略:通过参数优化的DC潮流模型快速计算线路切换方案,同时保证AC模型下的可行性,避免传统DC近似导致的功率越限或电压失稳。可集成至ST系列储能变流器的能量管理系统,实现毫秒级拓扑感知与功率调度,降低电网阻塞成本最高44%。该技术还可应用于光储一体化电站的构网型GFM控制,通过精准预测线路潮流分布优化虚拟同步机参数,提升新能源电站对弱电网的支撑能力,为iSolarCloud平台提供智能调度决策算法支持。