← 返回
储能系统技术 GaN器件 工商业光伏 机器学习 ★ 5.0

利用机器学习对金属-有机框架材料进行从材料到系统的宽范围筛选以用于氢气储存

Broad range material-to-system screening of metal–organic frameworks for hydrogen storage using machine learning

语言:

中文摘要

摘要 氢气在向可持续能源系统转型过程中起着关键作用,在发电和工业应用中具有重要地位。金属-有机框架材料(MOFs)已成为高效氢气储存的有前景的介质。然而,由于目前已合成的MOF种类极为庞大,筛选出具备实际应用潜力的候选材料仍具挑战性。本研究结合分子模拟、机器学习与技术经济分析,评估了MOFs在广泛运行条件下用于氢气储存的综合性能。以往对MOF数据库的筛选主要关注低温条件下高氢吸附容量的材料,而本研究发现,实现成本最小化的最优温度和压力取决于MOF的原材料价格。具体而言,当MOF的价格为15美元/千克时,在测试的9720种MOF中,有9692种在温度介于170 K至250 K、压力为150 bar的条件下达到最低成本。在此类最优条件下,有362种MOF的储氢平准化成本低于350 bar压缩氢气储存系统。此外,本研究揭示了导致系统成本较低的关键材料特性,包括高比表面积(>3000 m²/g)、大孔隙率(>0.78)以及大孔体积(>1.1 cm³/g)。

English Abstract

Abstract Hydrogen is pivotal in the transition to sustainable energy systems , playing major roles in power generation and industrial applications. Metal–organic frameworks (MOFs) have emerged as promising mediums for efficient hydrogen storage . However, identifying potential candidates for deployment is challenging due to the vast number of currently available synthesized MOFs. This study integrates molecular simulations , machine learning, and techno-economic analysis to evaluate the performance of MOFs across broad operation conditions for hydrogen storage applications. While previous screenings of MOF databases have predominantly emphasized high hydrogen capacities under cryogenic conditions, this study reveals that optimal temperatures and pressures for cost minimization depend on the raw price of the MOF. Specifically, when MOFs are priced at $15/kg, among the 9720 MOFs tested, 9692 MOFs achieve the lowest cost at temperatures between 170 K and 250 K and a pressure of 150 bar. Under these optimal conditions, 362 MOFs deliver a lower levelized cost of storage than 350 bar compressed gas hydrogen storage. Furthermore, this study reveals key material properties that result in low system cost, such as high surface areas (>3000 m 2 /g), large void fractions (>0.78), and large pore volumes (>1.1 cm 3 /g).
S

SunView 深度解读

该MOF氢储能研究对阳光电源储能系统具有前瞻价值。研究揭示的机器学习筛选方法可借鉴于ST系列储能系统的热管理优化,特别是170-250K温区的成本最优化思路可应用于PowerTitan液冷系统设计。高比表面积材料特性分析为未来氢储能与光伏耦合系统提供技术路径,iSolarCloud平台可集成氢储能预测性维护算法,支撑光伏制氢-储氢-燃料电池全链条能源管理,助力工商业零碳解决方案升级。