← 返回
储能系统技术 模型预测控制MPC 机器学习 强化学习 ★ 5.0

家庭电池储能系统在配电网中控制的机器学习与MPC方法比较

Comparison of machine learning and MPC methods for control of home battery storage systems in distribution grids

作者 Felicitas Mueller · Stevende Jongh · Claudio A.Cañizares · Thomas Leibfried · Kankar Bhattachary
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 400 卷
技术分类 储能系统技术
技术标签 模型预测控制MPC 机器学习 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Applied Machine Learning and optimization for Home Energy Management Systems (HEMS).
语言:

中文摘要

本文在主动配电网的影响及其交互作用背景下,提出并比较了采用传统优化技术与最先进的机器学习方法实现的家庭能源管理系统控制策略。首先介绍了基于模型预测控制算法的模型驱动方法,并将其在不同预测精度条件下与基于模仿学习和强化学习的无模型方法进行对比。以一种实用的、当前最先进的启发式规则控制器作为基准。通过目标函数值、电网约束违反情况以及计算时间等指标进行了深入比较。讨论了将这些家庭能源管理系统应用于一个包含13个连接住户的真实德国低压基准电网时的结果,每个住户均配备光伏发电、电池储能系统及电力负荷。结果表明,相较于典型的基于规则的方法,模型驱动与无模型方法均可实现性能提升,但在目标函数值和电网约束违反方面表现各异,具体取决于预测质量,其代价是更高的计算复杂度。此外,无模型方法通常具有较低的计算负担,但目标函数值较高且电网约束违反更多;其中,基于模仿学习的技术被证明在实际应用中具有最佳的综合折衷性能。

English Abstract

Abstract Control methods for Home Energy Management Systems implemented with traditional optimization techniques and state-of-the-art Machine Learning methods are presented and compared in this paper in the context of their impact on and interactions with Active Distribution Networks. Thus, model-based methods based on Model Predictive Control algorithms with different prediction qualities are first described and compared against model-free methods based on imitation learning and reinforcement learning. A practical, state-of-the-art, heuristic, rule-based controller is used as the baseline. An in-depth comparison is performed using metrics consisting of objective function values, grid constraint violations, and computational time. The results of applying these Home Energy Management Systems to a realistic German low voltage benchmark grid with 13 connected households, each containing solar generation, a battery storage system, and electrical loads are discussed. It is demonstrated that model-based and model-free methods can achieve improvements over typical rule-based methods, with varying performance in terms of objective function values and grid constraint violations depending on the forecasts, at the cost of higher computational complexity. Furthermore, model-free methods are shown to have in general low computational burden at higher objective function values with more grid constraint violations, with imitation-learning-based techniques proving to be the best compromise for practical applications.
S

SunView 深度解读

该研究对阳光电源ST系列储能变流器和PowerTitan系统的能量管理优化具有重要参考价值。文章对比了MPC模型预测控制与机器学习方法在家庭储能系统中的应用效果,验证了模仿学习在计算效率与性能间的最佳平衡。建议将此技术融入iSolarCloud平台的智能控制算法,通过强化学习优化多户储能系统的协同调度,降低配电网约束违规,提升ST系列PCS在德国等欧洲低压配电网场景的经济性与电网友好性,同时为户用储能ESS解决方案提供差异化竞争优势。