← 返回
超级电容器研究中的能量存储:从分子模拟到机器学习的跨学科应用
Energy storage in supercapacitor researches: Interdisciplinary applications from molecular simulations to machine learning
| 作者 | Yawen Dong1 · Yutong Liu1 · Feifei Mao · Hua Wu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 393 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | SiC器件 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A comprehensive overview of computational methods for SCs is provided. |
语言:
中文摘要
摘要 科学界持续关注超级电容器(SCs),因其在环境保护和能量存储方面具有重要意义。超级电容器的性能取决于比容量、循环稳定性、功率密度和能量密度等关键特性,其中电极材料的性能、电极与电解质之间的相互作用以及电极表面或层间的电荷转移过程,对超级电容器整体性能具有显著影响。在超级电容器的研究领域中,计算模拟的应用至关重要,因其具备强大的模拟计算与预测能力。本文综述了近年来利用密度泛函理论(DFT)和机器学习(ML)技术设计与优化超级电容器的最新进展。我们总结了DFT在理解电极材料的电子结构、电荷存储机制及电化学性质方面的应用,以及其在研究电极与电解质之间相互作用中的作用。此外,本文还重点阐述了机器学习在预测超级电容器性能、优化材料设计以及监测超级电容器器件健康状态(SOH)中的重要作用。DFT与ML相结合,为加速新材料的发现和提升超级电容器整体性能提供了强有力的方法。在此基础上,进一步整合分子动力学(MD)和蒙特卡洛(MC)模拟等其他计算技术,能够有效补充并增强分析与预测的能力。通过将DFT、MD、MC模拟与ML相集成,研究人员不仅能够深入全面地理解电极材料复杂的物理化学行为,还能借助这种协同化的计算方法显著加快材料筛选进程。
English Abstract
Abstract Sustaining scientific attention is aimed at the supercapacitors (SCs), which are significant for environmental protection and energy storage. The properties of the SCs are built on capacity, cycling stability, power and energy density , etc., in which the performances of electrode materials, interaction between electrode and electrolyte and charge transfer on the surface or interlayer of electrode vastly affect the overall abilities of SCs. In SCs research field, computational simulation applications are crucial for their simulating calculation and prediction capabilities. This review provides a comprehensive overview of the latest advancements in using density functional theory (DFT) and machine learning (ML) techniques to design and optimize SCs. We summarize the applications of DFT in understanding the electronic structure, charge storage mechanisms, and electrochemical properties of electrode materials, as well as the interactions between electrodes and electrolytes. Additionally, the role of ML in predicting SC performance , optimizing material design, and monitoring the state of health (SOH) of SC devices have been highlighted. The combination of DFT and ML offers a powerful approach to accelerate the discovery of new materials and improve the overall performance of SCs. On this basis, the integration of additional computational techniques such as molecular dynamics (MD) and Monte Carlo (MC) simulations further complements and enhances the capabilities of analysis and prediction. By integrating DFT, MD, MC simulations and ML, researchers can not only gain comprehensive insights into the complex behaviors of electrode materials but also significantly accelerate material screening through this synergistic computational approach.
S
SunView 深度解读
该超级电容器研究整合DFT、分子动力学与机器学习的方法论,对阳光电源储能系统具有重要价值。在ST系列PCS和PowerTitan产品中,可借鉴ML技术优化电极材料设计,提升功率密度和循环寿命;将SOH预测算法应用于iSolarCloud平台,实现储能设备健康状态智能监测;结合SiC器件特性,通过计算模拟优化电极-电解质界面电荷传输,为混合储能系统中超级电容与电池协同控制提供理论支撑,增强GFM模式下的快速功率响应能力。