← 返回
一种面向模块化储热系统设计的高效机器学习方法
Computationally effective machine learning approach for modular thermal energy storage design
| 作者 | Davinder Singh · Tanguy Rugamb · Harsh Katar · Kuljeet Singh Grewal |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 热仿真 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Integrated CFD and ML approach for modular thermal energy storage design. |
语言:
中文摘要
摘要 本研究提出了一种创新性方法,将计算流体动力学(CFD)与机器学习(ML)相结合,用于热能储存(TES)系统的设计与优化。基于使用CFD开展的放热过程参数化分析结果,训练了多种机器学习模型,包括线性回归、K近邻回归(KNN回归)、梯度提升回归(GBR)、XGBoost、LightGBM以及神经网络(NN)。结果表明,神经网络(NN)在预测混凝土和传热流体(HTF)温度随时间变化方面表现最优,是最适合的模型。训练后的机器学习模型为传统的CFD模拟提供了高效的替代方案,能够在不同入口条件、流速和时间条件下,快速预测混凝土热能储存(CTES)模块内的温度变化。依托这些机器学习模型,本研究进一步展示了模块化CTES级联系统的设计能力,该系统由多个模块串联或并联构成,相较于全尺寸CFD模拟,计算成本和时间减少了99%以上。例如,在预测4小时时变热行为时,CFD每数据点耗时97秒,单个模块总耗时达238,500秒;而机器学习模型每数据点仅需16–20毫秒,每个模块约耗时290秒,显示出其在预测热释放行为方面的高效率与良好的可扩展性,尤其适用于模块化CTES系统的设计与优化。此外,机器学习模型在涉及多个模块的CTES系统设计中同样表现出优异的计算效率,针对不同CTES系统配置的设计过程仅需约765至1047秒,显著优于CFD方法。CFD与ML的融合构建了一个简化的CTES系统设计与优化工作流程,大幅降低了计算投入、成本和时间消耗。更重要的是,该工作流程可通过引入额外的训练数据进行更新,从而适用于具有不同运行条件的新型模块化设计。这种基于机器学习方法的通用化特性使其能够广泛应用于多种类型的热能储存系统设计与几何构型中,为未来热能储存领域的研究与发展提供了极具前景的技术路径。
English Abstract
Abstract This research presents an innovative approach that integrates computational fluid dynamics (CFD) and machine learning (ML) for the design and optimization of thermal energy storage (TES) systems. Heat discharging parametric analyses conducted using CFD serve as the basis for training ML models, including linear regression, K-nearest neighbor (KNN) regression, gradient boost regression (GBR), XGBoost, LightGBM, and neural network (NN). NN emerges as the most suitable for predicting time-dependent variations of concrete and heat transfer fluid (HTF) temperatures. The trained ML models offer an efficient alternative to traditional CFD simulations, enabling the prediction of temperatures in concrete thermal energy storage (CTES) modules under varying inlet conditions, velocities, and time. Leveraging these ML models, the research demonstrates the design of modular CTES cascaded systems with multiple modules in series and parallel configurations, significantly reducing computational cost and time by over 99% compared to full-scale CFD simulations. For instance, in predicting 4-hour time-dependent thermal behavior, CFD takes 97 s per data point and 238,500 s for a single module, compared to ML models’ 16-20 ms per data point and around 290 s per module, indicating their efficiency and scalability in predicting thermal discharge, especially for modular CTES system design and optimization. ML models also demonstrate computational efficiency for designing CTES systems involving multiple modules, taking approximately 765 s - 1047 s for various CTES system configurations, indicating their effectiveness over CFD in predicting thermal discharge for modular CTES systems. The integration of CFD and ML provides a streamlined workflow for designing and optimizing CTES systems, reducing computational efforts, cost, and time. Moreover, this workflow can be updated with additional training data to implement it for unique modular designs with different conditions. Such a generalization of this ML-based approach makes it applicable to a wide range of thermal energy storage designs and geometries, offering a promising avenue for future research and development in the field of thermal energy storage.
S
SunView 深度解读
该CFD与机器学习融合技术对阳光电源储能系统具有重要价值。可应用于PowerTitan液冷储能热管理优化,通过神经网络模型替代传统CFD仿真,计算效率提升99%以上。适用于ST系列PCS多模块级联散热设计,快速预测电池簇温度分布。该方法可集成至iSolarCloud平台,实现储能电站热失控预测性维护,显著降低ESS热仿真成本,加速模块化液冷系统迭代开发,提升储能产品安全性与经济性。