← 返回
储能系统技术 储能系统 多物理场耦合 热仿真 ★ 5.0

通过耦合CFD与降阶热阻网络模型对热管理与阻隔一体化结构的建模与优化

Modelling and optimization of a thermal management and barrier integration structure by coupling CFD and reduced-order thermal resistance network

作者 Yongxi Wu · Anthony Chun Yin Yuen · Chongmao Mo · Xinyan Huang
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 343 卷
技术分类 储能系统技术
技术标签 储能系统 多物理场耦合 热仿真
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A tri-layer PCM-FR-PCM structure is proposed for TR suppression and heat control.
语言:

中文摘要

摘要 锂离子电池系统的热管理性能及热失控传播(TRP)特性是评估电池安全性的关键因素。本研究提出一种新型热管理与阻隔一体化结构(TMBIS),该结构集成相变材料(PCM)与阻燃(FR)隔热材料,旨在同时实现有效的热管理并抑制锂离子电池模组内的热失控传播。通过将降阶集总参数热阻网络(TRN)模型与计算流体动力学(CFD)模型相耦合,采用多尺度仿真方法,研究了热失控传播的动力学过程,阐明了该结构的保护机制并对其参数进行了优化。结果表明,在PCM与FR层的厚度比和导热系数比分别为0.8和0.5时,相较于无防护措施的情形,电池模组的最高温度从324 K降低至319 K,并显著延长了热失控传播时间间隔(Δt12:12.9 s → 81.7 s;Δt23:12.4 s → 69.5 s)。此外,本文还针对不同电池能量密度场景,探讨了TMBIS的最优数量及配置策略,为面向安全设计的锂离子电池系统提供了重要指导。所提出的TMBIS在未来高能量密度电池系统中具有广泛的应用潜力和重要的工程价值。

English Abstract

Abstract The thermal management performance and thermal runaway propagation (TRP) characteristics of lithium-ion battery systems are critical factors for assessing battery safety. This study proposes a novel thermal management and barrier integration structure (TMBIS), integrating phase-change materials (PCM) and flame-retardant (FR) insulation materials, to simultaneously achieve effective thermal management and mitigate TRP within lithium-ion battery modules. By coupling a reduced order lumped thermal resistance network (TRN) model with a computational fluid dynamics (CFD) model, a multi-scale simulation approach was employed to investigate the dynamics of TRP and elucidate the protective mechanism and optimize parameters of the proposed structure. The results indicated that, with PCM-to-FR thickness and thermal conductivity ratios of 0.8 and 0.5, respectively, the maximum temperature of the battery module was reduced from 324 K to 319 K and significantly extending TR propagation intervals ( Δ t 12 : 12.9 s → 81.7 s; Δ t 23 : 12.4 s → 69.5 s), compared to scenarios without protective measures. Furthermore, the optimal number and configuration strategies of TMBIS were explored under different battery energy density scenarios, providing crucial guidelines for safety-oriented lithium-ion battery system design. The proposed TMBIS has significant potential for broad applications and substantial engineering value in future high-energy–density battery systems.
S

SunView 深度解读

该热管理与热障一体化结构(TMBIS)技术对阳光电源ST系列储能系统及PowerTitan产品具有重要应用价值。通过相变材料与阻燃材料的集成设计,可显著提升电池模组热失控防护能力,将热蔓延时间延长5-6倍。其CFD与热阻网络耦合的多尺度仿真方法,可直接应用于阳光电源储能PCS的电池热管理系统优化设计,特别是在高能量密度场景下的安全防护策略制定。该技术与iSolarCloud平台的预测性维护功能结合,可实现储能系统热安全的主动预警与防护,为MW级储能电站的本质安全设计提供关键技术支撑。