← 返回
用于光伏系统中自动缺陷检测的机器学习方法
Machine learning approaches for automatic defect detection in photovoltaic systems
| 作者 | Swayam Rajat Mohanty · Moin Uddin Maruf · Vaibhav Singh · Zeeshan Ahmad |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 298 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 太阳能光伏模块 损坏 制造 安装 功率转换效率 |
语言:
中文摘要
摘要 太阳能光伏(PV)组件在制造、安装和运行过程中容易受到损坏,从而降低其光电转换效率。这种效率损失削弱了其在整个生命周期中的积极环境影响。通过无人机拍摄的图像对光伏组件进行运行期间的持续监测,对于及时修复或更换有缺陷的面板以维持高效率至关重要。结合计算机视觉技术,该方法为光伏电站中的缺陷监测提供了一种自动、非破坏性且成本效益高的工具。本文综述了当前基于深度学习的计算机视觉技术在太阳能组件缺陷检测中的应用现状。我们从多个层面比较和评估了现有的深度学习方法,包括图像类型、数据采集与处理方法、所采用的深度学习架构以及模型的可解释性。大多数方法涉及使用卷积神经网络,并结合数据增强或基于生成对抗网络的技术来扩充数据集规模。我们通过可解释性分析技术对这些深度学习方法进行了评估,结果表明模型在分类时主要关注图像中的较暗区域。这一分析揭示了现有方法中存在的明显不足,同时也为构建新模型时克服这些挑战奠定了基础。最后,我们总结了该领域仍需解决的研究空白及未来发展方向:将气象数据与几何深度学习融入现有方法以提升鲁棒性和可靠性;利用基于物理的神经网络构建更具领域感知能力的深度学习模型;以及引入模型可解释性以建立可信的智能诊断系统。
English Abstract
Abstract Solar photovoltaic (PV) modules are prone to damage during manufacturing, installation, and operation which reduces their power conversion efficiency . This loss diminishes their positive environmental impact over the lifecycle. Continuous monitoring of PV modules during operation via images captured by unmanned aerial vehicles is essential to ensure prompt repair or replacement of defective panels to maintain high efficiencies. Coupled with computer vision techniques, this approach provides an automatic, non-destructive, and cost-effective tool for monitoring defects in PV plants. We review the current landscape of deep learning-based computer vision techniques used for detecting defects in solar modules. We compare and evaluate the existing deep learning approaches at different levels, namely the type of images, data collection and processing method, deep learning architectures employed, and model interpretability. Most approaches involve the use of convolutional neural networks with data augmentation or generative adversarial network-based techniques to enhance dataset size. We evaluate the deep learning approaches through techniques aimed at determining their interpretability, which reveals that the model focuses on the darker regions of the image to perform the classification. This exercise points out clear gaps in the existing approaches while laying the groundwork for mitigating these challenges when building new models. Finally, we conclude with the relevant research gaps that need to be addressed and approaches for progress in this field: integrating weather data and geometric deep learning with existing approaches for robustness and reliability; leveraging physics-based neural networks to build more domain-aware deep learning models; and incorporating interpretability for building trustworthy models.
S
SunView 深度解读
该机器学习缺陷检测技术对阳光电源智能运维体系具有重要价值。可集成至iSolarCloud平台,结合无人机巡检与深度学习算法,实现光伏电站组件缺陷的自动识别与预测性维护。技术可应用于SG系列逆变器的MPPT优化策略调整,通过识别组件热斑、隐裂等缺陷,动态优化发电效率。建议将物理约束神经网络与气象数据融合,提升ST储能系统与光伏协同运行的可靠性,并增强模型可解释性以支撑电站资产管理决策。